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Abstract

Deduplication is widely used to effectively increase the logical capacity of large-scale
storage systems, by replacing redundant chunks of data with references to their unique
copies. As a result, the logical size of a storage system may be many multiples of the
physical data size. The many-to-one relationship between logical references and physical
chunks complicates many functionalities supported by traditional storage systems, but,
at the same time, presents an opportunity to rethink and optimize others. We focus on
the common task of searching for a byte string (keyword) in a large data repository.

The traditional, naïve, search mechanism traverses the directory tree and reads
the data chunks in the order in which they are referenced, fetching them from the
underlying storage devices repeatedly if they are referenced multiple times. We pro-
pose a DedupSearch algorithm that operates in two phases: it first scans the storage
sequentially and processes each data chunk only once, recording keyword matches in a
temporary result database. It then traverses the system’s metadata in its logical order,
attributing matches within chunks to the files that contain them. The main challenge
is to identify keywords that are split between logically adjacent chunks. To do that,
the physical phase records keyword prefixes and suffixes at chunk boundaries, and the
logical phase matches these substrings when processing the file’s metadata. We limit
the memory usage of the result database by offloading records of tiny (one-character)
partial matches to the SSD/HDD, and ensure that it is rarely accessed.

We compare our DedupSearch algorithm to the naïve one on datasets of three
different data types (text, code, and binaries), and show that it can reduce the overall
search time by orders of magnitude.
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Chapter 1

Introduction

Deduplication first appeared with backup storage systems holding weeks of highly re-
dundant content [ZLP08, WDQ+12, MB11], with the purpose of reducing the phys-
ical capacity required to store the growing amounts of logical backup data. This
is achieved by replacing redundant chunks of data with references to their unique
copies, and can reduce the total physical storage to 2% of the logical data, or even
less [WDQ+12]. Deduplication has recently become a standard feature of many stor-
age systems, including primary storage system that support high IOPS and low latency
accesses [SBGV12, ESKK+12]. Even with the lower redundancy levels in such systems,
deduplication may reduce the required physical capacity to 12%-50% of the original
data’s size [ESKK+12].

Most storage architectures distinguish between the logical view of files and ob-
jects and the physical layout of blocks or chunks of data on the storage media. In
deduplicated storage, however, this distinction further creates multiple logical point-
ers, often from different files and even users, to each physical chunk. This many-to-
one relationship complicates many functionalities that are supported by traditional
storage systems, such as caching, capacity planning, and support for quality of ser-
vice [SCJ16, NYS20, HHS+19]. At the same time, it presents an opportunity to rethink
other functionalities to be deduplication-aware and more efficient.

Keyword search is one such functionality, which is supported by some storage sys-
tems and is a necessary operation for numerous tasks. For example, an organization
may need to find a document containing particular terms, and if the search is mandated
by legal discovery [Red01], is has to be applied to backup systems [Wit06] and docu-
ment repositories that may include petabytes of content. Virus scans and inappropriate
content searches may also include a phase of scanning for specified byte strings corre-
sponding to a virus signature or a pirated software image [WDF+03, Kue02]. Finally,
data analysis and machine learning tools often rely on preprocessing stages to identify
relevant documents with a string search.

Logging and data analytics systems support fast keyword searches by construct-
ing an index of strings during data ingestion [Ela, Spl]. While they provide very fast
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lookup times, such indexes can consume a large fraction of the overall storage capac-
ity [MRYGM01, MSS]. More importantly, they often assume a delimiter set such as
whitespace, which is not useful for binary strings or more complex keyword patterns.
For the latter, an exhaustive scan of the data is required. A Naïve search algorithm
would process a file system by progressing through the files, opening each file, and scan-
ning its content for the specified keywords. Even without the effects of deduplication,
traversing the file system in its logical ‘tree’ order is inefficient due to fragmentation
and resulting random accesses. When deduplication is applied, a given chunk of data
may be read repeatedly from storage, once for every file it is referenced by.

We propose an alternative algorithm, DedupSearch, that progresses in two main
phases. We begin with a physical phase that performs a physical scan of the storage
system and scan each chunk of data for the keywords. This has the twin benefits of
reading the data sequentially with large I/Os as well as reading each chunk of data
only once. For each chunk of data, we record the exact matches of the keyword, if it is
found, as well as prefixes or suffixes of the keyword (partial matches) found at chunk
boundaries. We use the widely used [AC75] string-matching algorithm to efficiently
identify multiple keywords in a single scan, as well as their prefixes and suffixes.

We then continue with a logical phase that performs a logical scan of the filesystem
by traversing the chunk pointers that make up the files. Instead of reading the actual
data chunks, we check our records of exact and partial matches in those chunks, and
whether partial matches in logically adjacent chunks complete the requested keyword.
This mechanism lends itself to also supporting standard search parameters such as file
types, modification times, paths, owners, etc.

The database of chunk-level matches generated during the physical scan can be-
come excessively large when a keyword begins or ends with common byte patterns or
characters, such as ‘e’. Our experiments show that very short prefix and suffix matches
can become a sizable fraction of the database even though they are rarely part of a
completed query. To maximize the memory utilization of the physical phase and the
throughput of the logical phase, we separate records of “tiny” partial matches into
a dedicated database which is written to SSD/HDD. This database is accessed only
when the tiny prefix/suffix is missing for completing the keyword match, i.e., when
the corresponding suffix/prefix are found in an adjacent chunk—an infrequent even in
practice.

We implemented DedupSearch search in the Destor open-source deduplication sys-
tem [FFH+15], and evaluated it with three real-world datasets containing Linux kernel
versions, Wikipedia archives, and virtual machine backups. DedupSearch is faster that
the naïve search by orders of magnitude: its search time is proportionate to the physical
size of the data, while the naïve search time increases with its logical size. Despite its
potential overheads, the logical phase becomes dominant only when the number of files
is very large compared to the size of the physical data, as is the case in the archives
of the Linux kernel versions. Even in these use cases, DedupSearch outperforms the
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naïve search thanks to its efficient organization of the partial results, combined with
reading each data chunk only once. These advantages are maintained when searching
for multiple keywords at once and when varying the average chunk size and number of
duplicate chunks in the system.
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Chapter 2

Background and Challenges

Data in deduplicated systems is split into chunks, which are typically 4KB-8KB in
average size. Duplicate chunks are identified by their fingerprint—the result of hashing
the chunk’s content using a hash function with very low collision probability. These
fingerprints are also used as the chunks’ keys in the fingerprint-index, which contains
the location of the chunk on the disk. When a new chunk is identified, it is written into
a container that is several MBs in size to optimize disk writes. A container is written
to the disk when it is full, possibly after its content is compressed. A file is represented
by a recipe that lists the fingerprints of the file’s chunks. Reading a file entails looking
up the chunk locations in the fingerprint index, reading their containers (or container
sub-regions) from the disk, and possibly decompressing them in memory.

Consider, for example, the four files in Figure 2.1(a). Each file contains two chunks
of 5 bytes each, where some of the chunks have the same content. The total logical
size of these files is eight chunks, and this is also their size in a traditional storage
system, without deduplication. Figure 2.1(b) illustrates how these files will be stored
in a storage system with deduplication. We assume, for simplicity, that the files were

D E D U P P x x x x

P x x x x x x D E D

P x x x x U P x x x

x x D E D U P x x x

F1

F2

F3

F4
(a) Traditional system

P x x x xD E D U P x x D E D U P x x x
C0 C3C2C1

F1 F2 F3 F4

Container 0 Container 1

(b) Deduplicated system

Figure 2.1: Four files containing four unique chunks in a traditional storage system (a)
and in a deduplicated system (b).
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written in order of their IDs, and that the chunks are all of size 5 bytes.1 When
deduplication is applied, only four unique chunks are stored in the system, in two
10-Byte containers.

A keyword search in a traditional storage system would scan each files’ chunks in
order, with a total of eight sequential chunk reads. The same naïve search algorithm
can also be applied to the deduplicated storage: following the file recipes it would scan
the chunks in the following order: C0, C1, C1, C2, C1, C3, C2, C3—a total of eight chunk
reads. If this access pattern spans a large number of containers (larger than the cache
size), entire containers might be fetched from the disk several times. Moreover, the data
in each chunk will be processed by the underlying keyword-search algorithm multiple
times—once for each occurrence in a file.

Our key idea is to read and process each chunk in the system only once. Our
algorithm begins with a physical phase, which reads all the containers in order of their
physical addresses, and processes each of their chunks. In our example, we will perform
two sequential container reads, and process a total of four chunks. The challenges in
searching for keywords in the physical level result from the fact that most deduplication
systems do not maintain “back pointers’’ from chunks to the files that contain them.
Thus, we cannot directly associate keyword matches in a chunk with the corresponding
file or files. Furthermore, keywords might be split between adjacent chunks in a file,
preventing the identification of the keyword when searching the individual chunks.

Consider, for example, searching for the keyword dedup in the files in Figure 2.1.
The naïve search will easily identify the matches in files F1 and F4, even though the
word is split between chunks C2 and C3. The physical search will only identify the
exact match of the word in chunk C0 but will not be able to correlate it with file F1 or
identify F4 as a match.

To address these challenges, we add a logical phase following the completion of the
physical phase, that collects the matches within the chunks and identifies the files that
contain them. To identify keywords split between chunks, we must also record partial
matches—prefixes of the keyword that appear at the end of a chunk and suffixes that
appear at the beginning of a chunk. For example, in addition to recording the full
match in chunk C0, the physical phase will also record the prefix of length 3 in the end
of chunk C2, and the suffix of size 2 in the beginning of chunk C3. We must also record
the suffix of length 1 in chunk C1, to potentially match it with the prefix dedu, even
though this prefix does not appear in any chunk.

This introduces an additional challenge: some prefixes and suffixes might be very
frequent in the searched text. Consider, for example, a keyword that begins with the
letter ‘e’, whose frequency in English text is 12% [GJ18]. Recording all prefix matches
means we might have to record partial matches for 12% of the chunks in the system. In
other words, the number of partial matches we must store during the physical phase is

1At the host level, files are split into blocks. We assume, for this example, that each host-level block
corresponds to a deduplication-level chunk.
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not proportionate to the number of keyword matches in the physical (or logical) data.
This problem is aggravated if we search for multiple keywords during the same physical
scan. In the worst case, we might have to store intermediate results for all or almost
all the chunks in the system. In the following, we describe how our design addresses
these challenges.
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Chapter 3

The Design of DedupSearch

We begin by describing the underlying keyword-search algorithm and how it is used to
efficiently identify partial matches during the physical search phase. We then describe
the data structures used to store the exact and partial matches between the two phases.
Finally, we describe how the in-memory and on-disk databases are accessed efficiently
for the generation of the full matches during the logical phase.

3.1 String-matching algorithm

To identify keyword matches within chunks, we use the Aho-Corasick string-matching
algorithm [AC75]. This is a trie-based algorithm for matching multiple strings in a
single scan of the input. We explain here the details relevant for our context, and refer
the reader to the theoretical literature for a complete description of the algorithm and
its complexity.

The dictionary—set of keywords to match—is inserted into a trie, which represents
a finite-state deterministic automaton. The root of the trie is an empty node (state),
and the edges between consecutive nodes within a keyword are called child links. Each
child link represents a state transition that occurs when the next character in the input
matches the next character in the keyword. Thus, each node in the trie represents
the occurrence in the input of the substring represented by the path to that node.
Specifically, each leaf represents an exact match of its keyword in their dictionary and
is thus an accepting state in the automaton.

In addition to the child links, a special link is created between node u and node v

whenever v is the longest strict suffix of u in the trie. These links are mainly used when
the matching of an entire keyword fails, and are thus referred to in the literature as
failure links. For example, Figure 3.1(a) illustrates the trie created for the dictionary
{dedup,up}, where the dashed arrows represent the failure links.

The characters in the input are used to traverse the automaton. If an accepting
state is reached, the algorithm emits the corresponding keyword and its location in
the input. If the search fails in an internal node (i.e., when the next character in the
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PUDED

U P

(a) Search trie

DEDUP

(b) Reverse trie

Figure 3.1: The Aho-Corasick trie (a) and reverse trie (b) for the dictionary
{dedup,up}

input does not correspond to any child link) with a failure link, this means that the
substring at the end of the link occurs in the input, and the search continues from there.
For example, if the input is dede, then after reading the first three characters we will
reach the node corresponding to ded. After the next character, e, we will backtrack
to the node corresponding to d, continuing the search from the same input location,
immediately transitioning to the next node by traversing the child link e. There is an
implicit failure link to the root from every node that does not have an explicit failure
link to another node.

The failure links guarantee the linear complexity of the algorithm: they prevent
it from having to backtrack to earlier positions in the input whenever one keyword is
found, or when the search fails. For example, when the string dedup is identified in
the input, the failure link to the node representing up allows the algorithm to emit
all the keywords that occur in the input so far, continuing the search from the current
location. The overall complexity of the Aho-Corasick search is linear in the total length
of the dictionary plus the length of the input plus the number of keyword matches.

We use the Aho-Corasick algorithm with minimal modification to identify keyword
prefixes. When the end of a chunk is reached and the current state is an internal
node, then this node’s corresponding substring is the longest substring of at least one
keyword. We can traverse the path of failures links starting from this node and emit
all the longest prefixes found. For example, if the chunk ends with the string dedu,
then the current state corresponds to this prefix of dedup. The failure link points to
u, which is the longest prefix of up.

To identify suffixes at the beginning of a chunk, we construct a trie for the reverse
dictionary—the set of strings which are each a reverse of a string in the original dictio-
nary. We use it to search, in reverse order, the first n bytes of the chunk, where n is
the length of the longest string in the dictionary. For example, Figure 3.1(b) shows the
trie for the reverse dictionary of {dedup,up}. To find the suffixes in chunk C3 from
Figure 2.1(b), we use this trie on the (reverse) input string “xxxpu”.

Partial matches. As demonstrated in Figure 2.1, keywords might be split between
adjacent chunks. Let n denote the length of the keyword, and pi and si denote a prefix
and a suffix of length i, respectively. pi and si are considered prefix or suffix matches
if they constitute the last or first i characters in the chunk, respectively. A full match
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j = 1 2 3 4
i = 1 0 [d+edup]
2 0 [de+dup]
3 0 [ded+up] 2 [ded+edup]
4 0 [dedu+p]

Table 3.1: Partial-match table for dedup

occurs if the jth chunk in the file contains a prefix match of length i and the (j + 1)th
chunk (likely not stored consecutively with the jth chunk) contains a suffix match of
length n− i.

In some cases, a chunk may contain several prefix or suffix matches. For example,
chunk C2 in Figure 2.1(b) contains p3=ded as well as p1=d. Thus, this prefix can
be part of two possible full matches if the following chunk contains either s2=up or
s4=edup. To minimize the size of the partial results generated by the physical phase,
we record only the longest prefix and longest suffix in each chunk, if a partial match is
found. Note that if a chunk contains a prefix match of length i (e.g., ded) and some
suffix of this prefix is itself a prefix of size j < i of the keyword (e.g., d), then the
partial match of pj is implied by the record of the match pi.

To facilitate the identification of all possible full matches, we construct, for each
keyword, the set of all prefix and suffix matches. For example, for the word dedup, a
full match can be generated by combining the following pairs of longest partial matches:
d+edup, de+dup, ded+up, dedu+p, and ded+edup. The pairs can be represented
by a set of integer pairs corresponding to the substring lengths: {(1, 4), (2, 3), (3, 2),
(4, 1), (3, 4)}. This set is constructed offline, before the start of the logical phase. We
store it in the partial-match table, which is kept in memory for the duration of the
logical phase. It is implemented as a two dimensional array such that cell (i, j) holds
a list of all match offsets found in pi + pj . For example, Table 3.1 is the partial-match
table for keyword dedup, where the offsets are calculated with respect to the beginning
of the prefix. For example, the entry (3, 4) indicates that a match begins two characters
after the beginning of the partial match ded. During the logical phase, when adjacent
chunks contain a prefix pi and a suffix sj , we check the table for the pair (i, j) to
determine if and where a full match is found.

3.2 Match result database

Exact matches. Exact matches are identified within individual chunks during the
physical phase. To record the existence of an exact match, we only need the offset of
its first character. We record the existence of an exact match by the offset of its first
character.A chunk may contain several exact matches, which would require recording
an arbitrarily large number of offsets. In practice, however, the vast majority of the
chunks contain at most one exact match. This led us to define our basic data structures
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FP |Prefix| |Suffix| # Exact Offset
FP0 0 0 1 0
FP1 0 1 0 0
FP2 3 0 0 0
FP3 0 2 0 0

Table 3.2: Chunk-result records corresponding to the system described in Figure 2.1

as follows.
Chunk-result record: this is the basic record of search results in a single chunk.

It contains five fields: fingerprint (20 bytes), longest prefix length (1 byte),
longest suffix length (1 byte), number of exact matches (1 byte), and offset of
the first exact match (2 bytes). The total (fixed) size of this object is 26 bytes, although
it might vary with the system’s fingerprint and maximum chunk sizes. Figure 2.1(c)
shows the content of the chunk-result records for the chunks in Figure 2.1(b), when
searching for the keyword dedup.

Location-list record: this is a variable sized list of the locations which is allocated
(and read) only if the chunk contains more than one exact match. The first field is the
fingerprint (20 bytes), and the remaining fields contain one offset (within the chunk),
each. The number of offset fields is recorded in the number of exact matches field
in the corresponding chunk-result record. The value 255 is reserved to indicate that
there are more than 254 exact matches in the chunk. In that case, we use the following
alternative record.

Long location-list record: this object is identical to the location-list record, except
for one additional field. Following the chunk fingerprint, we store the precise number
of exact matches, whose value determines the number of offset fields in the record.

Tiny substrings. Keywords that begin or end with frequent letters in the alphabet
might result in the allocation of numerous chunk-result records whose partial matches
never generate a full match. To prevent these objects from unnecessarily inflating the
output of the physical phase, we record them in a different record type and store them
in a separate database (described below). Each tiny-result record contains three fields:
fingerprint (20 bytes) and two Booleans, prefix and suffix, indicating whether the
chunk contains a prefix match or a suffix match, respectively.

The tiny-result records are allocated only if this is the only match in the chunk,
i.e., the chunk does not contain any exact match nor a partial match longer than one
character. For example, the chunk-result record for chunk C1 in Figure 2.1(c) will be
replaced by a tiny-result record. Tiny-result records are accessed during the logical
phase only if the adjacent chunk contains a prefix or suffix of length n− 1.1

We use tiny-result records for substrings of a single character: our results show that
this captures the vast majority of tiny substrings. However, when searching for non-

1This optimization is not effective for keywords of length 2. We do not include specific optimizations
for this use case in our current design.
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ASCII keywords, we might encounter different patterns of tiny frequent substrings.
The tiny-result records could then be used for variable-length substrings which are
considered short. In this case, the record would contain an additional field indicating
the length of the substring. To improve space utilization, several Boolean fields can be
implemented within a single byte.

Multiple keywords. When the dictionary includes multiple keywords, we list
them and assign each keyword its serial number as its ID. We then replace the indi-
vidual per-chunk records with lists of <keyword-ID,result-fields> pairs. The structure
of the records (chunk-result, locations-list, and tiny-result) is modified as follows. It
includes one copy of the chunk fingerprint, followed by a list of <keyword-ID,result-
fields> pairs. The result fields correspond to the fields in each of the three original
records, and a pair is allocated for every keyword with non-empty fields. For example,
if we were searching for two keywords, dedup and up, then the chunk-result object for
chunk C3 in Figure 2.1(b) would include the following fields:

FP ID |Prefix| |Suffix| #Exact Offset ID |Prefix| |Suffix| #Exact Offset
FP3 0 0 2 0 0 1 0 0 1 0

Database organization. We store the output of the physical search phase in three
separate databases, where the chunk fingerprint is used as the lookup key. The chunk-
result index, location-list index, and tiny-result index store the chunk-result records,
location-list records, and tiny records, respectively. The first two databases are man-
aged as in-memory hash tables. The tiny-result index is stored in a disk-based hash
table. In a large-scale deduplicated system, chunks can be processed (and their results
recorded) in parallel to take advantage of the parallelism in the underlying physical
storage layout.

3.3 Generation of full search results

After all the chunks in the system have been processed, the logical phase begins. For
each file in the system, the file recipe is read, and the fingerprints of its chunks are
used to lookup result records in the database. The fingerprints are traversed in order
of their chunk’s appearance in the file. The process of collecting exact matches and
combining partial matches for each fingerprint is described in detail in Algorithm 1,
which is performed separately for every keyword.

This process starts by emitting the exact match in the chunk-result record, if a
match is found (lines 4-5). If the chunk contains more than one match, it fetches the
relevant location-list record and emits the additional matches (lines 6-9). If the chunk
contains a suffix, it attempts to combine it with a prefix in the previous chunk (lines
10-14). If the chunk contains a prefix or a suffix of length n − 1, then the tiny-result
index is queried for the corresponding one-character suffix or prefix (lines 15-22). Thus,
regular prefixes and suffixes (or tiny suffixes recorded in a regular chunk-result record)
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are matched when the suffix is found, while tiny substrings are matched when the
respective (n− 1)-length substring is found.

The logical phase can also be parallelized to some extent: while each file’s finger-
prints must be processed sequentially, separate backups or files within them can be
processed in parallel by multiple threads. Even for a large file, it is possible to pro-
cess sub-portions of the file recipe in parallel. Both physical and logical phases can be
further distributed between servers, requiring appropriate distributed result databases.
This extension is outside the scope of this paper.
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Algorithm 3.1 DedupSearch Logical Phase: handling FPi in File F

Input: FPi, FPi−1, FPi+1, resi−1

1: resi ← chunk_result[FPi]
2: if resi = NULL then
3: return
4: end if
5: if resi.exact_matches > 0 then
6: add file name, match offset to output
7: if resi.exact_matches > 1 then
8: locations← list_locations[FPi]
9: for all offsets in locations do

10: add file name, offset to output
11: end for
12: end if
13: end if
14: if resi.longest_suffix > 0 then
15: if resi−1 ̸= NULL then
16: if resi−1.longest_prefix > 0 then
17: for all matches in partial-match_table

[resi−1.longest_prefix, resi.longest_suffix] do
18: add file name, match offset to output
19: end for
20: end if
21: else if resi.longest_suffix = n− 1 then
22: tiny ← tiny_result[FPi−1]
23: if tiny ̸= NULL & tiny = prefix then
24: add file name, match offset to output
25: end if
26: end if
27: end if
28: if resi.longest_prefix = n− 1 then
29: tiny ← tiny_result[FPi+1]
30: if tiny ̸= NULL & tiny = suffix then
31: add file name, match offset to output
32: end if
33: end if
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Chapter 4

Implementation

We used the open-source deduplication system, Destor [FFH+15], for implementing
DedupSearch (DSearch). The physical phase of DedupSearch is composed of two
threads operating in parallel: one thread sequentially reads entire containers and in-
serts their chunks into the chunk queue. The second thread pops the chunks from the
queue and processes them, as described in Sections 3.1 and 3.2: it identifies exact and
partial matches of all the keywords, creates the respective result records, and stores
them in their respective databases.

We used Destor’s restore mechanism for implementing the logical phase. Destor’s
existing restore is composed of three threads operating in parallel: one thread reads
the file recipes and inserts them into the recipe queue. Another thread pops the recipes
from their queue, fetches the corresponding chunks by reading their containers, and
inserts the chunks in order of their appearance in the file to the chunk queue. The last
thread pops the chunks from their queue and writes them into the restored file.

The logical phase uses the second thread of the restore mechanism. It used the fin-
gerprints to fetch chunk-result records, rather than the chunks themselves, and inserts
them into the result queue with the required metadata. An additional thread pops the
result records from the queue, processes them according to Algorithm 1, and emits the
respective full matches.

The implementation of the chunk-result index and location-list index is similar to
Destor’s fingerprint index. This is an in-memory hash table, whose content is staged
to disk if the memory becomes full. The tiny-result index is implemented as an on-
disk hash table using BerkeleyDB [SY91, Ora]. We used BerkeleyDB’s default setup
with transactions disabled, because, in our current implementation, accesses to the
tiny-result index are performed from a single thread in each phase.

We modified a publicly available implementation of the Aho Corasick algorithm in
C++ [Gil] to improve its data structures, memory locality, and suffix matching, and
to support non-ASCII strings. For best integration of this implementation into Destor,
we refactored the Destor code to use C++ instead of C. Our entire implementation
of DedupSearch consists of approximately 1600 lines of code added to Destor and is
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publicly available [Eli].
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Chapter 5

Evaluation Setup

For comparison with DedupSearch search, we implemented the traditional (Naïve)
search within the same framework, Destor. Naïve uses Destore’s restore mechanism
by modifying its last thread: instead of writing the chunk’s data, it is processed with
the Aho-Corasick trie of the input keywords. To identify keywords that are split be-
tween chunks, the last n− 1 characters (where n is the length of the longest keyword)
of the previous chunk are concatenated to the beginning of the current chunk.

We ran our experiments on a server running Ubuntu 16.04.7, equipped with 128GB
DDR4 RAM and an Intel® Xeon® Silver 4210 CPU running at 2.40GHz. The backing
store for Destore was a DellR 8DN1Y 1TB 2.5” SATA HDD, and the tiny-result index
was stored on another identical HDD. We remounted Destore’s partition before each
experiment, to ensure it begins with a clean page cache.

5.1 Datasets

Our goal was to generate datasets that differ in their deduplication ratio and con-
tent type. To that end, we used data from three different sources—Wikipedia back-
ups [Wika, Wikb], Linux kernel versions [Lin], and web server VM backups—and used
Destor to create several distinct datasets from each source. Destor ingests all the data
in a specified target directory, creating one backup file. This file includes the data
chunks and the metadata required for reconstructing the individual files and directory
tree of the original target directory. We created two or four versions of each of our
datasets, each with a different average chunk size: 2KB, 4KB, 8KB, and 16KB.

The Linux version archive includes tarred backups of all the Linux kernel history,
ordered by version, major revision, minor revision, and patch. The size of the kernel
increased over time, from 32 MB in version 2.0 to 1128 MB in version 5.9.14 (the latest
in our datasets). The last component of the version name indicates the patch number,
and, naturally, versions with only a few patches between them are similar in content.
Thus, by varying the number of versions included, we created five datasets that vary
greatly in their logical size, but whose physical size is very similar, so the effective
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Logical Physical size + metadata size (GB)
Dataset size (GB) 2KB 4KB 8KB 16KB
Wiki-26 1692 667+16 861+9
(skip) 40.4% 51.4%
Wiki-41 2593 616+22 838+12

(consecutive) 24.6% 32.8%
Linux-197 58 10+1 10+1 11+1 13+1

(Minor versions) 19% 19% 20.7% 24.1%
Linux-408 204 10+4 10+4 15+2 16+2

(every 10th patch) 6.9% 6.9% 7.4% 8.8%
Linux-662 377 10+7 11+5 13+4 17+3

(every 5th patch) 4.5% 4.2% 4.5% 5.3%
Linux-1431 902 10+18 11+13 10+13 17+8

(every 2nd patch) 3.1% 2.7% 2.5% 2.8%
Linux-2703 1796 10+34 10+26 13+20 17+17
(every patch) 2.5% 2.0% 1.9% 1.9%

VM-37 2469 145+33 129+18 156+10 192+5
(1-2 days skips) 7.2% 6.0% 6.7% 8.0%

VM-20 1349 143+19 125+10 150+6 181+3
(3-4 days skips) 12.0% 10.0% 11.6% 13.6%

Table 5.1: The datasets used in our experiments. 2KB-16KB represent the average
chunk size in each version. The value below the physical size is its percentage of the
logical size.

space savings increases with number of versions. All our Linux datasets span the same
timeframe, but vary in the “backup frequency’’, i.e., the number of patches between
each version. They are listed in Table 5.1.

The English Wikipedia is archived twice a month since 2017 [Wika, Wikb]. We
used the archived versions that exclude media files, and consist of a single archive
file, each. We created two datasets from these versions. Our first dataset includes 41
versions, covering three consecutive periods of 4, 5, and 15 months between 2017 and
2020 (chosen based on bandwidth considerations). To create the second dataset, we
skipped every one or two versions, resulting in roughly half the logical size and almost
the same physical size as the first dataset. See the full list of versions in Appendix A.

For experimenting with binary (non-ASCII) keywords, we created a dataset of 37
VM backups (.vbk files) of two WordPress web servers used by the Technion Computer
Science faculty, over two periods of roughly two weeks each. The backups were gen-
erated every one or two days, so as not to coincide with the existing, regular backup
schedule of these servers. The first dataset consists of all 37 backups. The second con-
sists of 20 of these backups, with longer intervals (three to four days) between them.
Table 5.1 summarizes the sizes and content of all our datasets.

5.2 Keywords

We created dictionaries of keywords with well-defined characteristics to evaluate the
various aspects of DedupSearch. Specifically, we strived to include keywords that ap-
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pear sufficiently often in the data, and to avoid outliers within the dictionaries, i.e.,
words that are considerably more common than others. We also wanted to distinguish
between keywords with different probabilities of prefix or suffix matches, and different
suffix and prefix length. Our dictionaries consist of multiple keywords, to evaluate the
efficiency of DedupSearch in scenarios such as virus scans or offline legal searches.

We started by sampling 1% of a single Wikipedia backup (approximately 1GB),
and counted the number of occurrences of all the words within this sample, using white
spaces as delimiters between words. As we expected, the frequency distribution of the
keywords was highly skewed. We chose approximately 1000 words whose number of
occurrences was similar (between 500 and 1000), and whose length is at least 4. For
each word, we counted the number of occurrences of each of its prefixes and suffixes in
the sample. We also calculated the average prefix and suffix length, which were less than
1.2 for all keywords. This confirmed our assumption that the vast majority of substring
matches are of a single character. We then sorted the keywords in descending order
of the sum of their prefix and suffix occurrences and constructed the following three
dictionaries of 128 keywords each: Wiki-high, Wiki-low, and Wiki-med contain keywords
with the highest, least, and median number of prefixes and suffixes, respectively.

We repeated the process separately for Linux using an entire (single) Linux ver-
sion, resulting in the corresponding dictionaries Linux-high, Linux-low, and Linux-med.
We created an additional dictionary, Linux-line, that constitutes entire lines as search
strings, separating strings by EOL instead of white spaces. We chose 1000 lines with a
similar number of occurrences, sorted them by their prefix and suffix occurrences, and
chose the lines that make up the middle of the list.

For the binary keyword dictionary, we sampled 1GB from both of the VM backups,
and counted the number of occurrences of all the binary strings of length 16, 64, 256
and 1024 bytes. We chose strings with similar number of occurrences and the median
number of prefix and suffix matches. The resulting dictionaries for the four keyword
lengths are VM-16, VM-64, VM-256, and VM-1024. The statistics of all our dictionaries
are summarized in Table 5.2.
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Avg. pre/suf Avg. Avg. Avg. keyword
Dictionary length # pre/suf # occurrences length
Wiki-high 1.09 85.3 M 722 8.4
Wiki-med 1.10 42.2 M 699 7.8
Wiki-low 1.08 5.7 M 677 6.0
Linux-high 1.09 64.8 M 653 10.5
Linux-med 1.20 32.8 M 599 10.4
Linux-low 1.13 5.7 M 583 10.4
Linux-line 1.22 31.4 M 63 25.9
VM-16 1.00 8.7 M 31 16
VM-64 1.00 8.6 M 29 64
VM-256 1.00 8.6 M 27 256
VM-1024 1.00 8.6 M 27 1024

Table 5.2: Characteristics of our keyword dictionaries.
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Chapter 6

Experimental Results

The goal of our experimental evaluation was to understand how DedupSearch (DSearch)
compares to the Naïve search (Naïve), and how the performance of both algorithms is
affected by the system parameters (dedup ratio, chunk size, number of files) and search
parameters (dictionary size, frequency of substrings). We also wanted to evaluate the
overheads of substring matching in DedupSearch, and how it varies with these system
and search parameters.

6.1 DedupSearch performance

Effect of deduplication ratio. In our first set of experiments, we performed a search
of a single keyword from the ‘med’ dictionaries, i.e., with a median number of substring
occurrences. We repeated this search on all the datasets and chunk sizes detailed
in Table 5.1. Figure 6.1 shows, for each experiment, the total search time and the
time of the physical and logical phases of DedupSearch as compared to Naïve. The
result of each experiment is an average of four independent experiments, each with a
different keyword. The standard deviation was at most 6% of the average in all our
measurements except one.1

We first observe that DedupSearch consistently outperforms Naïve, and that the dif-
ference between them increases as the deduplication ratio (the ratio between the phys-
ical size and the logical size) decreases. For example, with 8KB chunks, DedupSearch
is 2.5× faster than Naïve on Linux-197 and 7.5× faster on Linux-2703. The total time
of Naïve increases linearly with the logical size of the dataset, as the number of times
chunks are read and processed increases. The total time of DedupSearch also increases
with the number of versions. However, the increase occurs only in the logical phase,
due to the increase in the number of file recipes that are processed. The time of the
physical phase remains roughly the same, as it depends only on the physical size of the
dataset.

1The standard deviation of time of the logical phase in the Linux datasets was as high as 15%, due
to the variation in the number of prefix and suffix matches for the different keywords.
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Figure 6.1: Search times of DedupSearch and Naïve with one word from the ‘med’
dictionary. The numbers 2-16 in the x-axis indicate the average chunk size in KB.
Above Naïve bar is how many times it is slower than DedupSearch.

Effect of chunk size. Chunk sizes present an inherent tradeoff in deduplicated
storage: smaller chunks result in better deduplication, but increase the size of the
fingerprint index. This tradeoff is also evident in the performance of both search algo-
rithms. The search time of Naïve on the Linux datasets and most of the VM datasets
decreases as the average chunk size increases. While this increases the physical data
size, it reduces the number of times each container is read on average, as well as the
number of times each chunk is processed. On the Wikipedia datasets and on the VM-37
dataset with 16KB chunks, however, the increase in chunk size increase the search time
of Naïve. The reason is their physical size, which is much larger than the page cache:
although fewer containers are fetched by Destor, more of their pages miss in the cache
and incur additional disk accesses.

The time of the physical phase in DedupSearch increases with the chunk size due to
the corresponding increase in the data’s physical size. This increase is most visible in
our Wikipedia datasets, which are our largest datasets. In contrast, the logical phase
is faster with larger chunks. The main reason is the reduction in the size of the file
recipes and the number of chunk fingerprints they contain. Larger chunks also mean
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Figure 6.2: Number of containers read in DedupSearch and Naïve with one word from
the ‘med’ dictionary. The numbers 2-16 in the x-axis indicate the average chunk size
in KB.

fewer chunk boundaries, which reduce the overall number of partial results that are
stored and processed. These results were similar in all our datasets.

Figure 6.2 shows the amount of data read by both search algorithms on represen-
tative datasets. It confirms our observations that the main benefit of DedupSearch
comes from reducing the amount of data read and processed by orders of magnitude,
compared to Naïve. For Naïve, the amount of data read increases with the logical
size and decreases with the chunk size. For DedupSearch, the amount of data read is
proportionate to the physical size of the dataset, regardless of its logical size.

Effect of dictionary size. To evaluate the effect of the dictionary size on the
efficiency of DedupSearch, we used subsets of different sizes from the ‘med’ dictionary.
Figure 6.3 shows the results for the Linux-408 and Wikipedia-41 workloads with 8KB
chunks (the results for the other datasets are similar). We repeated this experiment with
two underlying keyword-search algorithms: Aho-Corasick, as explained in Section 3.1,
and the native C++ find, described below. Both implementations use the result records,
data structures, and matching algorithm described in Sections 3.2- 3.3.

When the Aho-Corasick algorithm is used, the chunks’ processing time (denoted
as ‘search chunks’ in the figure) increases sub-linearly with the number of keywords
in the search query. Nevertheless, the processing time is lower than the time required
for reading the chunks from physical storage, which means that the time spent in the
physical phase does not depend on the dictionary size. The logical phase, however,
requires more time as the number of keywords increases: more keywords result in more
exact and partial matches generated in the physical phase. As a result, more time is
required to process the result records and to combine potential partial matches. We
observe this increase only when the dictionary size increases beyond eight keywords. For
smaller dictionaries (e.g., when comparing two keywords to one) increasing the number
of keywords means that each thread of the logical phase processes more records per
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Figure 6.3: Search times of different number of keywords from the ‘med’ dictionary
with DedupSearch Aho-Corasick vs. DedupSearch C++ Find and 8KB chunks.

chunk. This reduces the frequency of accesses to the shared queues, thus reducing
context switching and synchronization overheads. For example, the logical phase of
Linux-408 with two keywords is five seconds faster than that with one keyword.

C++ Find [C++] scans the data until the first character in the keyword is encoun-
tered. When this happens, the scan halts and the following characters are compared
to the keyword. If the string comparison succeeds, the match is emitted to the output.
Regardless of whether a match was found or not, the scan then resumes from where it
left off, which means the search backtracks whenever a keyword prefix is found in the
data. This process is more efficient than Aho-Corasick when the number of keywords
is small (see the difference in the ‘search chunks’ component): it’s overhead is lower
and its implementation is likely more efficient than our Aho-Corasick implementation.
However, its search time increases linearly with the number of keywords: it exceeds the
time used by Aho-Corasick when the dictionary size is 8 or higher, and its processing
time exceeds the time required to read the physical chunks when the dictionary size ex-
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Figure 6.4: Breakdown of DedupSearch times of 128 words from all dictionaries and
8KB chunks.

ceeds 16 and 64, in Linux-408 and Wikipedia-41, respectively. The difference between
the datasets stems from their different content: the prefixes in the Linux dictionaries
are longer, which causes Find to spend more time on string comparison.

Effect of keywords in the dictionary. To evaluate the effect of the type of
keywords, we compared the search times of DedupSearch and Naïve (Figure 6.4) when
using the full (128-word) dictionaries from Table 5.2 on four representative datasets:
Linux-408, Linux-2703, Wikipedia-41, and VM-20, all with 8KB chunks. The results for
all four binary (VM-*) dictionaries were identical, and so we present only results with
64-byte keywords. Our results show that in the physical phase, the time spent searching
for keywords within the chunks increases with the number of substring occurrences: it
is shortest for the ‘low’ dictionary and longest for the ‘high’ dictionary, where all the
keywords start and end with popular characters (e, t, a, i, o, and ‘_’). The duration
of the logical phase increases slightly with the number of substrings in the database,
because more partial results are fetched and processed.

Surprisingly, as the chunk processing time increases, the time spent waiting for
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disk reads decreases. This reduction is a result of the operating system’s readahead
mechanism: the next container is being read in the background while the chunks in the
current one are being processed. The page cache also explains the results of Naïve: it
processes each chunk several times, but the processing time, which is higher with more
prefixes and suffixes, is not masked by the reading time: many chunks already reside
in the cache. Thus, Naïve is more sensitive to the dictionary type when searching the
Linux datasets because they are small enough to fit almost entirely in memory.

6.2 DedupSearch data structures

Index sizes. Figure 6.5(top) shows the number of chunk-result, list-locations and
tiny-result records that are generated by the physical phase when searching for a single
keyword. Comparing the datasets to one another shows that the number of search
results (rightmost, white bar) increases with the logical size, while the number of result
records (i.e., objects stored in the database) depends only on the physical size. The
results of each dataset are an average of four experiments, with four different words from
the ‘med’ and ‘64’ dictionaries. Unlike the performance results, the standard deviation
here is larger because the results are highly sensitive to the number of substring matches
of each keyword. However, the trend for each keyword is similar to the trend of the
average in all the datasets.

This figure also shows that, in all the datasets, a large percentage of the records
are tiny-result records (note the log scale of the y-axis). Figure 6.5(bottom) shows the
size of each of the databases: the memory-resident chunk results and list locations,
and the on-disk tiny results. The tiny results constitute 62%, 84% and 98% of the
space occupied by the result databases in Linux-408, Wiki-41 and VM-20, respectively.
Storing them on the disk successfully reduces the memory footprint of both logical and
physical phases. The location lists occupy a small portion of the overall database size:
3%, 4% and 0% of the database size of Linux-408, Wiki-41 and VM-20, respectively.
There are, on average, 3.3 offsets in each location list. Separating these offsets into
dedicated records allows us to minimize the size of the more dominant chunk-result
records.

Figure 6.6 shows the number of result records for a representative dataset, Linux-
408 (the trend for the other datasets is similar), when varying the chunk size and the
keyword type. When the number of chunks increases (chunk size decreases), more
keyword matches are split between chunks. As a result, there are fewer exact matches
and fewer list locations, but more chunk-result records with prefixes and suffixes, and
more tiny-result records. The overall database size increases with the number of records,
from 0.82 MB for 16KB chunks to 2.28 MB with 2KB chunks.

The results of the different dictionaries show the sensitivity of DedupSearch to the
keyword type. Although the number of search results for the entire high, med, and
low dictionaries is similar, the number of result records generated during the search
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Dataset # results % matches # tiny # tiny tiny
(M) split records (M) accesses hit rate

Wiki-26 1.52 0.05 3.90 1167 0.1
208.50 0.10 490.31 44,719 0.94

Wiki-41 2.34 0.05 3.67 1780 0.1
321.07 0.09 459.96 69,094 0.94

Linux-197 0.03 0.19 0.033 59 0.08
5.08 0.12 4.187 1,665 0.73

Linux-408 0.12 0.19 0.036 197 0.15
16.08 0.11 4.575 5,986 0.71

Linux-662 0.23 0.19 0.037 360 0.16
29.16 0.11 4.627 11,101 0.7

Linux-1431 0.55 0.18 0.037 855 0.16
68.96 0.11 4.667 26,682 0.7

Linux-2703 1.08 0.18 0.037 1673 0.17
134.65 0.11 4.680 52,391 0.69

VM-20 0.03 0.00 0.113 0 N/A
4.02 1.61 14.619 0 N/A

VM-37 0.06 0.00 0.116 0 N/A
7.24 1.61 14.965 0 N/A

Table 6.1: Percentage of keywords split between chunks and usage of the tiny-result
index. The numbers are from searching one (top) and 128 (bottom) keywords from the
‘med’ and ‘64’ dictionaries.

varies drastically. For example, there are 4% more keyword matches when searching
for the Linux-high dictionary than for Linux-med, but 55% [120%] more records [tiny
records] in the database. Thanks to the compact representation of the tiny records
(and their location on the disk), the database for Linux-high is only 16% larger than
that of Linux-med, and its memory usage is also only 15% higher.

All the tiny-result databases in our experiments were small enough to fit in our
server’s memory. The largest tiny-result database, 3.6GBs, was created when searching
for the Wiki-high dictionary on the Wikipedia-41 dataset with 4KB chunks. Neverthe-
less, we designed and implemented DedupSearch to avoid memory contention in much
larger datasets.

Database accesses. Table 6.1 presents additional statistics of database usage and
access during the search of keywords from the ‘med’ and ‘64’ dictionaries (on the 8KB-
chunk datasets). The top line for each dataset presents an average of four experiments,
each with a different word from the dictionary. The bottom line presents results for
searching the entire dictionary. Less than 0.2% of the keyword matches were split
between chunks in the textual (Linux and Wikipedia) datasets. The percentage of split
results was higher in the binary datasets because the keywords in the dictionary were
considerably longer.

The number of accesses to the tiny-result index increases with the dataset’s logical
size and with the number of keywords. However, we note that it is still several orders of
magnitude lower than the number of records in the database: thanks to our substring
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Logical Physical Dedup Naïve DedupSearch time
Dataset size (GB) size (GB) ratio time (logical)
Wiki-1 76 76 99.8% 616 620 (11.1)
LNX-1 1 0.8 80% 7.4 6.7 (0.6)

LNX-1-merge 0.82 0.78 95% 6.2 6.1 (0.1)
LNX-408 204 17 7.4% 926 231 (121)

LNX-408-merge 169 19 11.2% 768 203 (28)

Table 6.2: The properties of the datasets created from a single archived version with
8KB chunks, and the time (in seconds) to search a single keyword from the ‘med’
dictionary.

matching algorithm, the tiny-result index is accessed only when the rest of the keyword
is found in the chunk. The probability that the missing character is found in the
adjacent chunk (‘tiny hit’) depends on the choice of keywords. For comparison, the
percentage of successful substring matches out of all attempts is approximately 5% in
the Linux datasets and 30% in the Wikipedia datasets. These differences are due to
the different text types in the two datasets, and to some short (4-letter) keywords in
the Wikipedia dataset.

Although the number of accesses to the tiny-result index can be as high as hundreds
of thousands when searching large dictionaries, these numbers are orders of magnitude
smaller than the random accesses that Naïve performs when fetching the data chunks
in their logical order. Furthermore, repeated accesses to the index result in page-cache
hits, as the operating system caches frequently accessed portions of the index.

6.3 DedupSearch overheads

In addition to the datasets described in Table 5.1, we created three small datasets, each
consisting of a single archived Linux/Wikipedia version. Table 6.2 shows the charac-
teristics of these datasets. They exhibit the least amount of deduplication, allowing us
to evaluate the overheads of DedupSearch in use-cases where its benefits are minimal.
The table also shows the time spent by Naïve and by DedupSearch when searching a
single keyword from the ‘med’ dictionary.

In the Wikipedia dataset, which exhibits minimal deduplication, DedupSearch is
slower than Naïve by 0.8%. The reason is that Naïve emits its search results as soon
as the chunks are processed, while DedupSearch requires the additional logical phase.
DedupSearch reads and processes 20% and 0.02% less data, respectively (recall that
data is read and processed in the granularity of containers and chunks, respectively).

In the Linux dataset, the physical size is 20% smaller than the logical size, and thus
the physical phase of DedupSearch is shorter than Naïve’s total time. The logical phase
on this dataset, however, is 600 msecs, which are 9% of the total time of DedupSearch.
The reason is the large number of files (64K) in the single Linux version. The logical
phase parallelizes reading the file recipes from disk, fetching chunk results from their
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database, and collecting the full matches for the files. As the number of files increases,
the overhead of context switching and synchronization between the threads increases.

To illustrate this effect, we include a merged dataset of the same Linux version,
where the content of the entire archived version is concatenated into a single file. The
physical size of Linux-1 and Linux-1-merge is similar and so is the time of the physical
phase when searching them. The logical phase, however, is six times shorter, because
it has to process only a single file recipe. We repeated this experiment with a larger
number of versions: we created the Linux-408-merge dataset by concatenating each of
the versions in the Linux-408 dataset into a single file. This dataset contains 408 files,
compared to a total of 15M files in Linux-408. The logical phase when searching the
merged dataset is 4.3× faster. This effect also explains the long times of the logical
phase when searching the Linux datasets (see Figure 6.1). The number of files in each
Linux dataset increases from 4.3M in Linux-197 to 133M in Linux-2703. We conclude
that the overheads of DedupSearch are low, even when the deduplication is very low.
When deduplication ratios are high, these overheads become negligible as DedupSearch
is faster than Naive by orders of magnitude.

DedupSearch performs extra processing per chunk in order to create and store the
records, which is not done by the naïve search. To analyze the data processing stage,
we created additional 5 backups with no duplicates of container-sized (4 MB) samples
from Wikipedia. The data is read from disk in advance and remains in memory for
the duration of the experiment, to eliminate I/O delays. We measured the time of the
processing thread of the physical phase (containing the keyword search algorithm and
storing the records) and compared it to the processing time of the naïve search. We
performed a search with one and 128 keywords from the ‘high’ dictionary. With one
word, DedupSearch and the naïve search spent the same time for processing the data.
However, with 128 keywords the processing thread of DedupSearch ran 32% longer
than that of naïve. The reason is that because the naïve search immediately outputs
the matches, while DedupSearch stores the partial records for later use. At the same
time, the amount of records DedupSearch stores is not proportional to the number of
matches, especially in the ‘high’ dictionary. With 128 keywords there are hundreds of
records whereas with 1 keyword there were only dozens.

To conclude, in the rare case that the CPU is the bottleneck, the main influence
is the data processing stage. Namely, the performance of DedupSearch compared to
that of naïve depends on the amount of data on which the string-matching algorithm
is performed. Therefore, it is influenced by the deduplication ratio of the data and the
number of keywords. Under such conditions, the naïve search has to process at least
0% - 30% more data so DedupSearch would be more reasonable to use. In the common
case that the I/O is the bottleneck, DedupSearch outperforms the naïve search. The
DedupSearch physical phase is faster than the naïve search by orders of magnitude
thanks to the reduction of the amount of data read. The logical phase time depends
on the metadata size, which is mainly affected by the number of files and fingerprints.
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However, the logical phase time is the same order of magnitude as the physical phase
time.
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Chapter 7

Discussion

Extended search options. The basic design of DedupSearch lends itself to several
straightforward extensions that can enhance the functionality of the search. The first
is the use of “wildcards’’—special characters that represent entire character groups,
such as numbers, punctuation marks, etc. One challenge is that, if the character group
includes too many common characters, then the tiny index might include records for
all the chunks in the system. DedupSearch prevents the tiny-result index from filling
the memory, and limits the accesses to it during the logical phase, which should suffice
for addressing this challenge.

Grep-style ‘*’ wildcards can be supported by creating a dictionary that includes all
the precise (non-*) substrings in the query. The traversal of the file recipe during the
logical phase would have to ensure that they all appear in the file in the correct order.
A similar mechanism could be used to search for keywords that appear within a certain
distance from one another, within the same file.

It would be more challenging to support keywords that span more than two chunks.
To identify such keywords, it is not sufficient to record keyword prefixes and suffixes
at chunk boundaries. We would have to also identify chunks whose entire content
constitutes a substring of the keyword, attempting to match the chunk content starting
all possible offsets within the keyword. Supporting regular expressions is similarly
challenging, because the matched expression might span more than two chunks.

In some cases, one would like to search in a specific folder of the file system, or a
certain user of VM that uses deduplication, while DedupSearch is built for scanning
all the files in the file system. Using DedupSearch over a portion of the files in the
system might not be as efficient as searching the entire file system, compared to the
naïve search. The effect on the duration of DedupSearch will not be significant, as it
still has to perform a full physical scan, which is the main time consumer. We expect
the logical phase to consume less time and be a negligible part of the overall time, as
its time strongly depends on the number of file recipes, corresponding to the number
of files that are been searched.

Approximate search. Some applications of keyword search do not require the full

37

 

 

 



output generated by DedupSearch. For example, if the application only requires the
list of files containing the keyword, without the offset of all the keyword occurrences
within the file, the logical phase can stop processing a file’s recipe as soon as a keyword
is found. This search option would also eliminate the need for the location-list records.
An accelerated, best-effort search could focus on exact matches within a chunk, trading
the accuracy guaranteed by the substring matching in Algorithm 1 for a faster search.

If the set of keyword delimiters is known in advance, e.g, are guaranteed to be white
spaces and punctuation marks, the system’s chunking mechanism could be modified to
ensure that chunks always begin with a delimiter. This would eliminate the need for
finding, recording, and matching keyword prefixes and suffixes. On the other hand, it
would also preclude the ability to search for keywords that contain these delimiters,
such as entire sentences or non-ASCII strings.

Additional applications. The mechanisms used in DedupSearch might apply
to additional domains. Dividing the search into a physical and logical phase can po-
tentially accelerate keyword search in highly fragmented or log-structured file systems
where logically adjacent data blocks are not necessarily physically adjacent. DedupSearch
can also support copy-on-write snapshots where physical data blocks belong to more
than one snapshot.

Recipe-assisted search. It is possible to eliminate the need for the tiny-result
index by modifying the structure of the system’s file recipe. Namely, we can store
the first and last byte of the chunk in the file recipe, with its fingerprint. These bytes
correspond to the first and the last characters in the chunk, and thus, if these characters
constitute a tiny substring of a keyword, it will be accessible via the file recipe. This
addition would affect the logical phase as follows. When discovering a substring of
length n1, we can replace the tiny-result lookup (lines 22 and 29 in Algorithm 1)
with checking the respective (first or last) byte of the adjacent fingerprint in the file
recipe. This alternative will eliminate the disk space requirements for the tiny-result
index, as well as the overhead of inserting tiny results into this index. The cost of this
modification is the increase in the file recipe size. For example, if the fingerprint size is
20 bytes, then adding two bytes for each chunk will increase the recipe size by at most
10%, depending on the additional metadata stored in the recipe. This is a reasonable
tradeoff in systems that perform full-scale searches frequently.
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Chapter 8

Related Work

Deduplication is a maturing field, and we direct readers to survey papers for general
background material [PP14, XJF+16]. Our DedupSearch technique follows on previous
work that processed post-deduplication data sequentially along with an analysis phase
on the file recipes, which has been applied to garbage collection [DDS+17, DJS+19]
and seeding during data migration [NYS20]. We leverage the basic concept of such
work by processing the post-deduplication data with large, sequential I/Os instead of
performing a logical walk through the file system with related random I/O. Thus far, we
have not found previous research that optimized string search for deduplicated storage.

String matching. String matching is a classical problem with a rich family of
solutions that are used in a variety of areas. The longstanding character-based ex-
act string matching algorithms are still at the heart of modern search tools. These
include the Boyer-Moore algorithms [BM77], hashing-based algorithms such as Rabin-
Karp [KR87], and suffix-automata based methods such as Knuth-Morris-Pratt [KMP77]
and Aho-Corasick [AC75]. ACCH [BBK12] accelerates Aho-Corasick on Compressed
HTTP Traffic by recording partial matches in referenced substrings. GPU-based string
matching is used in network intrusion detection systems [VI10, YCD+06].

Approximate string matching searches for an approximate pattern, and not nec-
essarily an exact one. Methods include online algorithms such as [WF74] and the
bitap algorithm used for the Unix agrep utility [BYG92], and faster offline algorithms
that use indexing of various types. These methods are used for various tools such as
spell-checking and spam-filtering [Gus97], and searching within DNA patterns. These
algorithms are used in both software- and hardware-based search paradigms. The
string-matching algorithm is orthogonal to the main design principles of DedupSearch.
Thus, it can be extended to utilize most of these advanced mechanisms.

Indexing. Offline algorithms use indexing to achieve sub-linear search time. In-
dexing methods include suffix-trees [Gus97] metric trees, [BN98] and n-gram methods
[NBYST01], and more recently, the rank and select structure is used in compressed
indexing [FLPP09]. Indeed, many systems scan their dataset in advance to build an
index mapping from terms to their locations. This is a common approach when queries
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are frequent and latency must be low. For example, Elasticsearch [Ela] and Splunk [Spl]
support log search with a large indexing system combined. CLP [RLY21] reduces the
size of their index by mapping structured compressed logs. Apache Solr [Sol], an open-
source enterprise-search platform, performs full-text search based on indexing, and
post-search ranking of the outcome.

A downside of building a full index is that it precludes searching keywords that are
not indexed, such as full sentences or arbitraty binary strings. More importantly, its
size might become a substantial fraction of the dataset size. Melink et al. [MRYGM01]
found that an index for web content was 5-7% of the dataset size when using whitespace
as a delimiter. The index built by Microsoft Search may take 10% or more of the total
capacity [MSS]. Our approach is more appropriate when queries are infrequent and
moderate latency is acceptable such as in legal discovery, where a court may order a
company to identify emails or other records relevant to a legal proceeding, including a
search of backup storage systems [Red01, Wit06].

Near-storage processing. DedupSearch can be viewed as a form of near-storage
processing, where the storage system supports certain computations in attempt to re-
duce unnecessary I/O traffic and memory usage. For example, YourSQL [JBY+16]
can accelerate certain data-intensive queries: it filters data by offloading scanning to
programmable SSDs. REGISTOR [PYY19] accelerates regular expression matching by
similarly offloading the task to programmable hardware on the SSD. Unlike these ap-
proaches, DedupSearch does not require dedicated hardware modified storage interface.

At a larger scale, BAD-FS [BTAD+04] orchestrates originally-uncoordinated large,
I/O-intensive batch workloads on distributed storage nodes to minimize I/O and wide-
area traffic. Quiver [KS20] similarly coordinates batches of gradient descent training
jobs to maximize its cache utilization. The design of DedupSearch is considerably
simpler than these system, but it shares their underlying principle: that data is fetched
and/or processed once for use in several relevant contexts.
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Chapter 9

Conclusions

We redesigned the fundamental storage function of string search to be aware of dedu-
plication in storage systems. We present a two phase search algorithm: the physical
phase scans the storage space and stores matches per chunk. Also partial matches are
stored, as a keyword can be split between two chunks. To handle the large number of
records we store most of them on the disk, while only the popular are in memory. The
logical phase scans all file recipes and uses the chunk level results to collect all matches
and checks partial matches of adjacent chunks for split matches.

Our evaluation demonstrates significant savings of time and reads of DedupSearch
in comparison to the naïve search, thanks to the physical scan that reads duplicated
chunks only once. DedupSearch keeps outperforming naïve on all our experiments, in
which we study the effects of deduplication ratio, chunk size, searched keywords, and
other parameters. The analysis shows that naïve’s run time increases as the logical size
grows, while the run time of DedupSearch shows little difference. DedupSearch has
a minor memory footprint and a minimal disk accesses thanks to our data structures
optimizations.
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Appendix A

Wikipedia Datasets Versions

The dates of the versions included in each Wikipedia dataset are listed below. They
were chosen based on their availability and frequency.

Wiki-26:
Taken from [Wika]: Janury 1st 2017, Febuary 1st 2017, March 1st 2017, April 20th
2017, June 1st 2017, July 20th 2017 September 1st 2017, October 20th 2017 December
1st 2017, January 20th 2018, Febuary 20th 2018, March 20th 2018, September 20th
2018, October 20th 2018, November 20th 2018, December 20th 2018, January 20th
2019, February 20th 2019, July 20th 2019, February 1st 2020, March 1st 2020, April
1st 2020
Taken from [Wikb]: September 20th 2020, October 20th 2020, November 20th 2020,
December 20th 2020

Wiki-41:
Taken from [Wika]: January 1st 2017, January 20th 2017, February 1st 2017, February
20th 2017, March 1st 2017, March 20th 2017, April 1st 2017, April 20th 2017, May 1st
2017, May 20th 2017, June 1st 2017, July 1st 2017, July 20th 2017, August 1st 2017,
August 20th 2017, September 1st 2017, September 20th 2017, October 20th 2017, De-
cember 1st 2017, December 20th 2017, January 1st 2018, January 20th 2018, February
20th 2018, March 20th 2018, October 20th 2018, November 1st 2018, November 20th
2018, December 1st 2018, December 20th 2018, January 1st 2019, January 20th 2019,
February 1st 2019, February 20th 2019
Taken from [Wikb]: September 20th 2020, October 1st 2020, October 20th 2020,
November 1th 2020, November 20th 2020, December 1st 2020, December 20th 2020
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אהו-קורסיק המחרוזות חיפוש באלגוריתם משתמשים אנו אקראי. בסדר מקריאה יותר מהירה

בין מפוצלת להיות עשויה החיפוש מילת החיפוש. מילת לאיתור בלוק כל לסריקת (Aho-Corasick)
בבלוק, בחיפוש התאמות למציאת אפשרויות לכמה מתייחסים אנו ולכן קובץ, של עוקבים בלוקים שני

נשמור החיפוש מילת של מלאה התאמה של במקרה השני. השלב לקראת נתונים במסד נשמור אותן

בתחילת החיפוש מילת של סיפא מציאת של במקרה נמצאה. היא שבו הבלוק מתחילת ההיסט את

השני שבשלב כדי שמצאנו, המקסימלי הרישא/סיפא אורך את נשמור בלוק, בסוף שלה רישא או בלוק

חד חד באופן מגדיר המקסימלי האורך מלאה. להתאמה תושלם החלקית ההתאמה אם לבדוק נוכל

יותר. קצרות רישות/סיפות של הימצאותן על ממנו להסיק וניתן הרישא/סיפא, את ערכי

הנתונים. שבמסד הביניים לתוצאות ומתייחסים הקבצים סיכומי של לוגית סריקה מבצעים השני בשלב

נבדוק אצבע, טביעת לכל מידע. של לבלוקים שמתייחסות אצבע מטביעות מורכב הקבצים סיכום

הבאה האצבע טביעת האם נבדוק חלקית, התאמה של במקרה חלקית. או מלאה התאמה יש אם

החיפוש. מילת את שמשלימה חלקית לתוצאה מובילה הקובץ בסיכום

גדול, להיות יכול הפיזית הסריקה במהלך שמיוצרות והחלקיות המלאות התוצאות של הנתונים מסד

מראים שלנו הניסויים באלפבית. נפוצות אותיות מכילה הסיפא) / הרישא (או החיפוש כשמילת במיוחד

מהוות בעודן הנתונים, מסד מגודל משמעותי חלק להוות יכולות קצרות וסיפות רישות של שהתאמות

אופטימיזציות בכמה תומך המהיר האלגוריתם של המבנה שפוצלו. מילים של מהתוצאות זניח חלק

עם בלוקים תוצאות לאינדקס התוצאות את מפרידים אנו הזיכרון. עם העבודה את לייעל שנועדו

תו באורך וסיפות רישות של התאמות עם (tiny-result) זעירות תוצאות ולאינדקס בסיסי מידע

כן, כמו נמוכה. בתדירות בפועל אליו וניגשים הקשיח בדיסק נשמר הזעירות התוצאות אינדקס בודד.

אהו-קורסיק החיפוש אלגוריתם במקביל: מחרוזות כמה של בחיפוש תומך חלקיו כל על האלגוריתם

החיפוש. מילות כל של הביניים תוצאות רשימת את שומרים בלוק ולכל במקביל מילים כמה לחפש יכול

אמתיות: מערכות המייצגים גיבויים מקבצי שלושה יצרנו האלגוריתם ביצועי של הערכה לצורך

מכונות של גיבויים מספר וכן האנגלית ויקיפדיה של גיבויים מספר ,(Linux) לינוקס גרסאות מספר

בתהליך שונים בלוקים בגדלי שימוש תוך גרסאות כמה יצרנו מערכת סוג לכל .(VM) וירטואליות

כל עבור חיפוש מילות של קבוצות יצרנו כן, כמו שונה. גיבויים מספר של והכללה הדדופליקציה

חיפוש שכללו ניסויים מספר ביצענו קבוצה. בכל והסיפות הרישות שכיחות בין הבדלים עם מערכת

שלמות. קבוצות של חיפוש בין והשוואה השונות במערכות בודדת מילה

הן מהדיסק, מידע פחות קורא וכן הנאיבי מהחיפוש יותר מהיר שלנו שהאלגוריתם ראינו בניסויים

כמה במקום אחת פעם הכפול המידע קריאת של ההשפעה בזכות והן הפיזית הסריקה תהליך בזכות

עולה המהיר החיפוש זמן ואילו במערכת, קבצים יותר שיש ככל מתארך הנאיבי החיפוש משך פעמים.

הבלוקים קריאת זמן לרוב כשבמהלכו החיפוש, זמן של המשמעותי החלק הוא הפיזי השלב במעט. רק

שסיכומי ככל ומתארך הפיזי, לשלב יחסית זמן מעט לוקח הלוגי השלב בהם. החיפוש מזמן ארוך

עיבוד בנוסף, הבלוקים. הקטנת בעקבות והן הקבצים במספר עלייה בעקבות הן – גדלים הקבצים

אימתנו המהיר. לחיפוש והן הנאיבי לחיפוש הן הלוגית הסריקה את מאריך רבים קטנים קבצים של

מסד את ומגדילות בלוקים להרבה מתאימות החיפוש במילת נפוצות בתים שתבניות ההשערה את

הנתונים ממסד 98% עד להעביר מצליחות המהיר לחיפוש שלנו האופטימיזציות זאת, עם הנתונים.

המעטות הגישות בזכות החיפוש, זמני על מינורית השפעה עם (DRAM) הראשי לזיכרון מחוץ אל

המשניים. הנתונים למבני
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תקציר

המאוחסן המידע נפח לצמצום ביותר היעילות הדרכים אחת היא (deduplication) דדופליקציה

לאורך שנצבר מידע שאוגרות גיבוי מערכות עבור במקור פותחה השיטה גדולות. אחסון במערכות

דדופליקציה לאחרונה, כפילויות. של גדולה כמות מכיל כאלה במערכות מידע טבעי, באופן רב. זמן

התומכות לגיבויים) בניגוד שוטפת, פעילות (לצרכי ראשיות אחסון במערכות גם לשימוש נכנסה

דדופליקציה רבות. אחסון במערכות נפוצה השיטה כיום מהיר. תגובה ובזמן גבוהה (IOPS) בתפוקה
שמאפשר מה בלוק, כל של ייחודי לעותק במצביעים מידע של כפולים (chunks) בלוקים מחליפה

כפילויות רמת עם ראשי אחסון מערכות עבור המערכת. של הפיזי מהנפח גדול לוגי נתונים נפח לאחסן

הדרוש הפיזי הנפח (כלומר 8 עד 2 פי הדרוש הפיזי הנפח את להקטין עשויה דדופליקציה נמוכה,

ויותר. 50 פי של לחסכון להגיע ניתן גיבוי שבמערכות בעוד הלוגי), מהנפח 1/8 עד 1/2 יהיה

מערכת של הלוגי ההיבט בין מבחינה בדדופליקציה תמיכה עם אחסון מערכת של הארכיטקטורה

וכו׳) אובייקטים (בלוקים, לקבצים מתייחס הלוגי ההיבט שבבסיסה. הפיזי ההיבט לבין האחסון

סדרה כולל קובץ סיכום .(file recipes) קבצים״ ״סיכומי ידי על ומיוצגים המשתמש ידי על שנכתבים

סדרת את ומייצגים ,(fingerprints) אצבע טביעות הנקראים קריפטוגרפית, ערבול פונקציית ערכי של

אותם הכפילויות, חסר המידע של לבלוקים מתייחס הפיזי ההיבט הקובץ. את שמרכיבים הבלוקים

דחוס. באופן לאחסן ניתן

שמסיבות ארגון למשל, רבות. משימות לביצוע הנחוצה מחרוזת חיפוש בבעיית נתמקד שלנו במחקר

גיבוי במערכת חיפוש לבצע ומעוניין מסוימים, מושגים שמכילים מסמכים למצוא נדרש משפטיות

בתים מחרוזות אחר סריקה של שלב לכלול שעשויים ראוי לא תוכן וחיפוש וירוסים סריקות גדולה;

כלי מסתמכים עליו מקדים כעיבוד מחרוזות חיפוש פיראטית; לתוכנה או לוירוס התואמות ספציפיות,

לחיפוש אפשרית חלופה להוות עשויה מראש מפתח מילות של אינדקס בניית מכונה. ולמידת ניתוח

על מסתמך ולרוב הכולל האחסון מנפח גדול חלק להוות עלול כזה שאינדקס הוא החיסרון מחרוזות,

בתים. מחרוזות עבור שימושי שאינו רווח, כמו מפרידים תווים

פתיחה התיקיות, על מעבר באמצעות הקבצים מערכת את סורק נאיבי כיום המקובל החיפוש מכניזם

של קריאה דדופליקציה, ללא אפילו החיפוש. מילת עבור תוכנם של וסריקה מהקבצים אחד כל של

עם במערכת האחסון. מערכת פני על מפוזר הקובץ תוכן כאשר יעילה אינה לוגי באופן הקבצים כל

עליו. מצביעים קבצים כמה אם האחסון ממערכת ושוב שוב להיקרא עשוי נתון בלוק דדופליקציה,

מבצעים הראשון בשלב עיקריים. שלבים משני המורכב מהיר, החיפוש אלגוריתם את מציעים אנו

מובילה זו סריקה החיפוש. מילת עבור מידע בלוק כל של וסריקה האחסון מערכת של פיזית סריקה

שהיא המידע של רציפה לקריאה וכן בלוק, כל של הבודדת הקריאה בזכות מידע פחות לקריאת

i

 

 

 



 

 

 



טאוב. ומרלין הנרי ע״ש המחשב למדעי בפקולטה ידגר, גלה דוקטור של בהנחייתה בוצע המחקר

תודות

זמן שהקדישה על ידגר, גלה דוקטור שלי, למנחה עמוקה תודה להודות ברצוני ובראשונה, בראש

חשיבה על נהדרים, רעיונות על תודה מחדש. פעם בכל והפתיעו הציפיות כל על שעלו ומאמצים רב

נראה היה הכל שבלעדיה יחדיו מהנה עבודה ועל רבה השראה על מצוינת, הנחייה על פוריה, משותפת

אחרת.

המעניינת המבט נקודת ועל הנהדרים והרעיונות העצות על שיליין (פיל) פיליפ לדוקטור רבה תודה

ושיפורו. אהו-קורסיק אלגוריתם במימוש הרב הסיוע על חנוכוב לאמנון תודה התעשייה. של

ועל אפשר שרק מה בכל סייגים לא בי שתמכו על ואילן, גלית להוריי, שמורה מיוחדת תודה

ז"ל דב ולסבא האקדמית, הדרך את לי התוותה שמינקות אדי לסבתא תודה האינסופית. אהבתם

שם היו שתמיד על משה ולפפה מרל לגרני תודה בטכניון. המשפחה חלוץ ושהיה קרוי אני שמו שעל

בשבילי.

הדרך לאורך הרבה עזרתם על הלימודים, במהלך שרכשתי לחבריי אודה חביבים, אחרונים

יותר. הרבה ומהנה לקלה החוויה את שהפכו על וכמובן בטכניון,

על-ידי נתמך (807/20 (מס' זה מחקר בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

למדע. הלאומית הקרן
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