
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.

Efficiently Combining
Confidentiality and Availability
in Distributed Storage Systems

Roman Shor

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Efficiently Combining
Confidentiality and Availability
in Distributed Storage Systems

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Roman Shor

Submitted to the Senate

of the Technion — Israel Institute of Technology

Adar 5778 Haifa March 2018

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

This research was carried out under the supervision of Dr. Gala Yadgar, Prof. Eitan

Yaakobi and Prof. Assaf Schuster, in the Faculty of Computer Science.

Acknowledgements

I would like to thank my advisors, especially Gala Yadgar, for their support and all

the time invested in me and in this research. I learned a lot their tremendous research

experience. It was a pleasure and an privilege working with them and learning from

them. I would also like to thank my wife and my parents for supporting me throughout

this challenging period.

The generous financial help of the Technion is gratefully acknowledged.

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

1.1 Cloud Storage . 5

1.2 Data Confidentiality . 6

1.3 Our Contribution . 6

2 Data Protection Schemes 9

2.1 Data Availability . 9

2.2 Data Confidentiality . 10

2.2.1 Encryption . 11

2.2.2 Secret Sharing . 11

2.2.3 AONT-RS . 12

2.2.4 Secure RAID . 13

2.3 Random Data Generation . 15

2.4 Challenges and Goals . 15

3 Computational overheads 17

3.1 Evaluation Goals . 17

3.2 Methodology . 17

3.2.1 Cryptographic Functions . 17

3.2.2 Random Number Generators . 18

3.2.3 Implementation of Data Protection Schemes 19

3.2.4 Experimental Setup . 19

3.3 Results . 20

3.3.1 Cryptographic Function Overhead 20

3.3.2 Random Number Generation . 20

3.3.3 Encode/Decode Performance . 21

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4 End-to-End Evaluation 27

4.1 Evaluation Goals . 27

4.2 Methodology . 27

4.2.1 Object Store Implementation . 27

4.2.2 Evaluation Setup . 30

4.3 Results . 31

4.3.1 Write/Read Throughput . 31

4.3.2 Random Access Latency . 34

4.3.3 Storage and Server Type . 36

4.3.4 Conclusions . 36

5 Discussion 37

5.1 Full Node Repair . 37

5.2 Deduplication . 37

5.3 Pricing . 38

5.4 Storage Types . 38

5.5 Device Types and Network Overhead . 38

6 Related work 41

7 Conclusions 43

Hebrew Abstract i

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

List of Figures

2.1 Systematic encoding of (n, k) Reed-Solomon erasure code. m1, . . . ,mk are the

data elements, and p1 . . . , pr are parity elements. 9

2.2 Encoding of Shamir’s secret-sharing scheme (a) and generalized Shamir’s secret-

sharing scheme (b). u1, . . . , uz are the random key elements, m1, . . . ,mk are

the data elements. 12

2.3 Encoding process of AONT-RS, c1, . . . , ck are the encrypted data chunks and

p1, . . . , pr are the parity chunks. 13

2.4 Encoding process of (n = 9, k = 3, r = 4, z = 2) secure RAID (a) using two

Reed-Solomon codes, and encoding process of (n, k, r, z) secure RAID (b) using

generator n× (z + k) matrix. 14

3.1 Effect of random data generation on secret-sharing schemes with different random

rates and r = z = 2. Using hardware accelerated secure PRNG minimizes the

overhead. 21

3.2 Encoding (a) and decoding (b) with r = z = 2. The high overhead of encryption

is eliminated by hardware acceleration. AONT-RS suffers the overhead of non-

accelerated cryptographic hash function. Shamir’s high overhead prevents its

throughput from increasing with k, despite the decrease in random rate. In

decoding secure RAID outperforms all the schemes, thanks to its near-systematic

encoding. 22

3.3 Encoding with r = 1, z = 2 (a) and with r = 1, z = 2 (b); and decoding with

z = 1 (c). Changing r does not influence systematic decoding, and changing z

is only applicable for secret-sharing schemes. 23

3.4 Degraded decode throughput with r = z = 2 and two unavailable systematic

shares. Data recovery affects only schemes with efficient decoding. 24

3.5 Random access average decode latency with r = z = 2. Random access

performance is a major drawback of AONT-RS. 25

4.1 A high-level illustration of our object store, with write and read operations. In

the write, object is encoded creating n shares, which are sent to n consecutive

servers. In read, n − r shares are requested from the servers on which they

reside and the object is decoded from these shares. 28

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4.2 Write (a) and read (b) throughput in the LAN setup with r = z = 2. I/O

throughput becomes the bottleneck of all schemes except Shamir’s secret sharing.

Computation remains the bottleneck for ChaCha, AONT-RS, and Shamir’s

scheme. 32

4.3 Write (a), read (b) and greedy read (c) throughput in multi-cloud setup, on

c4.xlarge instances with general purpose SSD storage and r = z = 2. In

multi-cloud environments, the network bandwidth dominates performance. The

amount of redundancy (r) determines the number of high-latency servers the

system can tolerate. 33

4.4 Random access latency in LAN setup with r = z = 2. AONT-RS and Shamir’s

scheme require k and k + z shares respectively for decoding a single chunk. . 34

4.5 Write (a), read (b) and greedy read (c) throughput in multi-cloud setting with

k = r = z = 2 and two storage and instance types. ‘L ’ is c4.large and ‘XL’ is

c4.xlarge. Network is the bottleneck in regular reads, but HDDs improve the

throughput of write and greedy read operations. 35

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abstract

When sensitive data is stored in the cloud, the only way to ensure its secrecy is by

encrypting it before it is uploaded. Recently introduced hardware acceleration methods

promise to eliminate the computational complexity of encryption, but leave clients with

the challenge of securely managing encryption keys. At the same time, the emerging

multi-cloud model, in which data is stored redundantly in two or more independent

clouds, provides an opportunity to protect sensitive data with secret-sharing schemes.

Secure RAID, a recently proposed scheme, minimizes the computational overheads of

secret sharing, but requires non-negligible storage overhead and random data generation.

These recent advances introduce new opportunities to reduce data protection costs

considerably. However, previous studies were performed before they were introduced,

and thus do not indicate which approach will provide the best application-perceived

performance.

To bridge this gap, we present the first end-to-end comparison of state-of-the-art

encryption-based and secret sharing data protection approaches. In this study we

implement two secret-sharing schemes and two encryption-based schemes, and measure

their performance in a wide range of system parameters. We address all stages of the

data path, including random data generation, encoding and encryption overheads, and

overall throughput. Our evaluation on a local cluster and on a multi-cloud prototype

identifies the tipping point at which the bottleneck of data protection shifts from the

computational overhead of encoding and random data generation to storage and network

bandwidth and global availability.

1©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

2©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abbreviations and Notations

n — Code length

k — Data blocks

r — Redundancy blocks

z — Confidentiality level, the maximum number of eavesdropping

nodes that cannot gain any information on the secret

s — Number of servers in distributed object store

Random rate — z
k , the ratio between the amount of random and data bytes

in a secret-sharing stripe

Cloud storage — Storage model in which data is stored in logical pools acces-

sible via the Internet, while physical storage spans multiple

servers in remote data center

Multi-cloud — Storage model where data is stored redundantly in two or

more independent clouds

MDS — Maximum distance seperable, a MDS code with r parity

blocks can recover from r node failure

Systematic — Code where k data blocks are kept without change

HDD — Hard disk drive, a magnetic storage device

SSD — Solid-state drive, a flash based storage device

AES — Advanced encryption standard, symmetric block cipher

ChaCha — Symmetric stream cipher

AONT — All or nothing transform

RS — Reed-Solomon erasure code

GF — Galois finite field

SIMD — Single instruction multiple data, processor instructions for

vectorization acceleration

RNG — Random number generator

PRNG — Pseudo random number generator

CSPRNG — Cryptographically secure pseudo random number generator

3©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1

Introduction

1.1 Cloud Storage

Cloud storage services are ubiquitous, offering high performance and availability, global-

scale fault tolerance, file sharing, elasticity, and competitive pricing schemes. Out-

sourcing data storage and management to a cloud storage provider can be significantly

less costly to an organization than maintaining a private data-center with equivalent

availability and performance.

However, many businesses and individuals are reluctant to trust an external service

provider with their sensitive data; while providers guarantee the durability of the data,

they cannot fully guarantee confidentiality in the face of a malicious or compromised

employee. Recent reports [5, 63] suggest that the majority of cloud service providers

do not specify in their terms of service that data is owned by the customers, and lack

security mechanisms to protect it. Furthermore, several incidents of “data leakage” from

the cloud have been recently documented [30, 66, 67, 71].

Additional limitations hinder the wider adoption of cloud storage. One is vendor

lock-in, where switching from one cloud provider to another (for various business reasons)

becomes prohibitively expensive due to the cost of retrieving large amounts of data

or developing new application interfaces [65]. Another is outages that a single cloud

provider might suffer [44, 51].

An emerging and increasingly popular storage model addresses these limitations;

data in a multi-cloud [12, 14, 15, 22, 58] (also referred to as ‘inter-cloud’, ‘cloud-of-clouds’

or ‘federated cloud’) is stored redundantly in two or more independent clouds. Such

redundancy enables users to access or recover their data when one of the clouds is

temporarily unavailable, goes out of business, or experiences excessive load. Alternatively,

it offers the flexibility of placing more capacity or I/O load on the clouds that currently

offer it for the lowest price or highest throughput.

5©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1.2 Data Confidentiality

When data is stored by one provider, the only way to ensure confidentiality is to encrypt

it at the client side, before it is uploaded to the cloud, and decrypt it whenever it is

downloaded. This requires generation and maintenance (either locally or remotely) of a

large number of encryption keys. Key-based encryption provides computational security—

it prevents attacks by requiring excessive complexity (and thus, computational power and

time). However, because encryption is considered computationally expensive [78, 87],

many users still upload their original data to the cloud without further protection [5].

The multi-cloud model presents an opportunity to protect data by secret sharing.

A secret-sharing scheme is a special encoding which combines the user’s original data

with redundant random data and ensures that the original data can only be decoded

by obtaining all of the encoded pieces. These pieces must be stored on independently

secured nodes, as is done in multi-clouds. Secret sharing provides information-theoretic

security—even an attacker with unlimited computational power has no way of gaining

any information about the data that was stored. Thus, information-theoretic security is

considered stronger than computational security.

Secret-sharing schemes do not require encryption-keys, but they incur significant

storage overhead, non-trivial encoding and decoding complexity, and require generating

large amounts of random data. Thus, they are currently used only for long-term

archiving of cold data [87], or for remotely storing small amounts of data, like encryption

keys [14, 15, 22].

An alternative to secret-sharing schemes was proposed in AONT-RS [78]. This

scheme is based on encryption, but instead of explicit encryption keys storage, the keys

are hashed with the encrypted data and dispersed on independent storage nodes. This

allows AONT-RS to achieve significantly higher throughput and lower storage overhead

than secret sharing.

Recent technological advances eliminate two major bottlenecks of data protection.

One is a new secret-sharing scheme, secure RAID, that facilitates efficient decoding

of partial data, and whose computational overhead is comparable to that of standard

erasure coding [39, 43]. Another is hardware-accelerated encryption [31] and its adoption

in common cryptographic libraries [6].

1.3 Our Contribution

Recent technological advances present system designers with a new trade-off. Encryption

provides computational security, but requires key generation and management and

relies on hardware accelerators for efficient implementation. Secret sharing provides

information theoretical security at low complexity but incurs significant storage overhead.

Unfortunately, existing evaluation results do not indicate which approach will provide

better application-perceived performance, because they are based on studies conducted

6©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

prior to these advances.

Our goal is to bridge this gap by directly comparing the state of the art of both

approaches. We reevaluate the inherent trade-offs of secure remote storage and present

the first comprehensive end-to-end analysis of secret-sharing and encryption-based

schemes. Our evaluation addresses all stages of the data path, including random data

generation, encoding and encryption overheads, and overall throughput on a local cluster

and on geo-distributed remote storage.

We implement two secret-sharing schemes and two encryption-based schemes, and

measure their performance in a wide range of system parameters, including levels of

availability and security, storage devices, and network architectures.

Our main conclusions can be summarized as follows.

1. The low throughput of true random data generation precludes information-

theoretical security in real system implementations.

2. Secure RAID completely eliminates the computational bottleneck of secret sharing,

and is outperformed only by hardware accelerated encryption.

3. Once storage and network bottlenecks are introduced, secret sharing is outper-

formed by encryption based techniques due to its additional I/O and transfer

overhead.

4. Only encryption and secure-RAID provide efficient access to small random data

chunks.

7©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

8©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2

Data Protection Schemes

2.1 Data Availability

Fault tolerance in distributed storage systems is provided by replication or by erasure

coding. An (n, k, r) erasure code encodes k data chunks into a stripe of n chunks, such

that all the data can be reconstructed from any n− r chunks. The encoded chunks are

distributed across n different disks or nodes, ensuring that the data remains available

even if r arbitrary nodes are unavailable.

In a systematic erasure code, the original data is stored as is on k nodes and the

redundant (parity) information is stored on the remaining n− k nodes. Thus, such a

scheme allows direct access to data stored on a healthy node and requires less encoding

operations, than non-systematic codes.

Maximum distance separable (MDS) codes can tolerate the highest number of

concurrent node failures given their storage overhead, i.e., r = n− k.

The most commonly used erasure code is Reed-Solomon [77], which is both systematic

and MDS. Its encoding and decoding entail matrix multiplication over a finite field.

Figure 2.1 depicts (n, k) Reed-Solomon encoding using an n× k systematic generator

matrix. This matrix is multiplied by the m1, . . . ,mk data vector to yield data + parity

Figure 2.1: Systematic encoding of (n, k) Reed-Solomon erasure code. m1, . . . ,mk are the data
elements, and p1 . . . , pr are parity elements.

9©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

vector. Traditionally, finite field operations are considered computationally expensive.

However, efficient implementations of Reed-Solomon are available [73] and used in

open-source systems such as Ceph [92] and HDFS [84]. Recent studies show that its

encoding and decoding overheads are negligible compared to other overheads in the

system [36, 46, 56, 72]. New acceleration libraries, such as Intel’s ISA-L [21], utilize

specialized processor instructions to further increase encoding and decoding throughput.

Array codes such as EVENODD [18] and RDP [23] employ simple XOR operations

during encoding and decoding in order to avoid computationally expensive finite field

operations. These codes improve computational complexity (compared to scalar codes,

such as Reed-Solomon) by requiring only binary (XOR) operations, at the cost of

restricting the choice of encoding parameters and data layout. Another popular erasure

code is LRC (Local Reconstruction Code), which is used in Windows Azure [37]. This

code adds local parity blocks, so that one node can be recovered by accessing only

a small subset of the surviving blocks. Unlike Reed-Solomon, LRC is non-MDS, it

introduces a trade-off between storage efficiency and repair cost. We chose to focus

on Reed-Solomon erasure code in this study, as it is a widely used, with a variety of

efficient open source implementations and acceleration libraries, and can be constructed

for any n, k unlike array codes.

2.2 Data Confidentiality

Storage systems must address many aspects of data security, including data integrity,

user authentication and access control, and secure communication with clients. These

aspects can be successfully guaranteed by any single distributed-storage provider and

are orthogonal to our analysis. Mechanisms that address them guarantee that the data

stored by users cannot be modified without their consent. However, they do not prevent

unauthorized parties from accessing this data, fully or partially.

We note that while unauthorized data modification can be detected by the owner of

the data, unauthorized reads can go unnoticed. In this context, eavesdropping refers

to an unauthorized reader, who might also forward (leak) the data or parts of it to

an unauthorized third party. Confidentiality refers to preventing eavesdroppers from

inferring any information about the data. We are interested in the latter in this work.

For data distributed across n nodes, the confidentiality level is defined by z, the

maximum number of eavesdropping nodes that cannot gain access to any part of the

data, even if they collude. This formal definition inherently assumes that all nodes are

independently secured. In other words, when a node is attacked, causing it to behave

maliciously, this does not mean the remaining nodes are equally compromised. Thus,

the n nodes must be separately managed and owned, like in the multi-cloud model.

10©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

2.2.1 Encryption

In symmetric-key cryptography, the data is encrypted and decrypted using a small secret

encryption key. Many distributed storage systems are designed assuming that data

has been encrypted at the client prior to being distributed [12, 27, 33, 50, 79]. Thus,

generation and maintenance of encryption keys remains the responsibility of the clients.

While keys can be generated using a password, these tend to get lost, which results in

data loss. Securely storing encryption keys locally at the client prevents access to the

data from different end devices, while distributing the keys on several devices introduces

additional security issues [59, 69, 87].

Cryptographic encryption introduces significant computational overhead to the data

path. The advanced encryption standard (AES) [24] is a popular symmetric encryption

algorithm, which operates on fixed-length strings (blocks) of 128 bits. AES includes

implementations (ciphers) for key sizes ranging from 128 to 256. Larger encryption keys

provide better security, but also incur higher computational overhead. This limitation

has recently been addressed by the introduction of a specialized hardware accelerator

and a processor instruction set, AES-NI [31].

2.2.2 Secret Sharing

Secret sharing is an alternative method for ensuring data confidentiality without requiring

maintenance of encryption keys. In an (n, k, r, z) threshold secret-sharing scheme, a

secret of size k is split between n nodes, such that every subset of z nodes or less cannot

deduce any information about the secret, and the data can be recovered if at most r

nodes are unavailable [11, 52, 60, 83].

The most prevalent secret-sharing scheme is Shamir’s [83]. A secret m over a finite

field F is shared between n nodes with threshold z as follows. z random elements are

chosen from F , (u1, . . . , uz), referred to as keys (not to be confused with encryption keys).

The secret and the keys define a polynomial p(x) = m + u1x + · · ·+ uzx
z. Evaluating

p(x) over n distinct non-zero points (x1, . . . , xn), yields n shares, ci = p(xi). The secret

can be decoded from any z + 1 shares, from which the polynomial is reconstructed by

interpolation. The secret is p(0). The polynomial cannot be reconstructed by less than

z + 1 shares, so z shares or less do not reveal any information on the secret. Thus, in

this scheme, k = 1 and r = n− (z + 1).

The polynomial is typically evaluated via multiplication by a n × (z + 1) matrix,

as depicted in Figure 2.2 (a). Overall, encoding the secret requires O(zn) finite field

operations per byte. Decoding is typically done by interpolation, incurring O(z2) finite

field operations per byte. Encoding a secret of b bytes also requires zb bytes of random

data for the keys. We discuss the challenge of random data generation below.

A generalization of Shamir’s secret-sharing scheme, called ramp or packed Shamir [16],

allows r to be independently specified in addition to n and z. Thus, while at least z + 1

nodes are required to cooperate in order to gain any information on the secret, n− r

11©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 2.2: Encoding of Shamir’s secret-sharing scheme (a) and generalized Shamir’s secret-
sharing scheme (b). u1, . . . , uz are the random key elements, m1, . . . ,mk are the data elements.

nodes are required in order to fully recover the secret.

Encoding is similar to Shamir’s but is applied to k secrets, (m1, . . . ,mk), over a

finite field F . The k secrets and the z random keys, (u1, . . . , uz), define a polynomial of

degree z + k − 1. Evaluating p(x) over n distinct non-zero points (x1, . . . , xn), yields n

shares ci = p(xi). Decoding the secret requires z + k shares, with which the polynomial

is reconstructed by interpolation.

Like in Shamir’s original scheme, the polynomial is typically evaluated via multipli-

cation by a n× (z + k) matrix, as depicted in Figure 2.2 (b). Thus, encoding requires

O((z + k)n) finite field operations per k secret bytes. Decoding is done by interpolation

and incurs O((z + k)2) finite field operations per byte. Sharing a secret of b bytes

requires zb
k bytes of random data. This variation of Shamir’s scheme can be applied to

arbitrary k, r, and z with the minimal achievable storage overhead. However, its main

limitation is the need to download and decode n− r non-systematic shares upon every

data access.

The added value of confidentiality on top of standard fault tolerance entails significant

overhead. It has been shown that the maximal secret size, k, in an (n, k, r, z) threshold

secret-sharing scheme is n− r − z [42]. Thus, while the minimal storage overhead for

tolerating r failures with an erasure code is k+r
k (in MDS codes), the minimal overhead

for also tolerating z eavesdropping nodes is k+r+z
k .

2.2.3 AONT-RS

All-or-Nothing Transform with Reed-Solomon (AONT-RS) [78] was proposed in the

context of independently-secure storage nodes, and is designed to avoid the high storage

and computational overheads of secret sharing schemes as well as encryption key main-

tenance. As depicted in Figure 2.3, it first encrypts the data with a standard symmetric

cipher like AES using a random encryption key. It then computes a cryptographic hash

of the encrypted data, XORs the hash value with the key, and appends the resulting

12©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 2.3: Encoding process of AONT-RS, c1, . . . , ck are the encrypted data chunks and
p1, . . . , pr are the parity chunks.

string to the data, creating an AONT-RS package. The package is encoded with an

(n, k) Reed-Solomon code, and the resulting n chunks are each stored on a different

node.

Clients can decrypt any of the systematic chunks as long as they store the encryption

key. At the same time, owners who do not store the key locally can recover it by

computing the cryptographic hash of all k systematic chunks. This procedure is followed

even if the application requires less than k data chunks. An attacker can access the

data only by compromising k independent nodes or guessing the encryption key.

A known drawback of encryption is that it eliminates duplicates in the encrypted

data. As a result, storage reduction techniques such as deduplication do not work

on encrypted data. A variation of AONT-RS scheme, that allows deduplication, was

presented in CDStore [57]. In this version, instead of using a random encryption key,

the key is generated based on the object’s content. Thus, identical data has an identical

encryption key and the encrypted data is identical as well. This allows deduplication by

both clients and servers.

The evaluation of AONT-RS in the original paper shows that this scheme is superior

to secret sharing schemes. However AONT-RS was only compared to the basic Shamir’s

secret-sharing scheme, which is less efficient than the generalized version. Furthermore,

the paper was published before hardware accelerated encryption was available, and

before the introduction of efficient secret sharing schemes.

2.2.4 Secure RAID

A recently proposed secret-sharing scheme follows an alternative approach for addressing

the limitations of Shamir’s scheme: rather than relying on encryption, it minimizes the

number of finite field operations for encoding and decoding. An (n, k, r, z) secure-RAID

scheme stores k secrets, (m1, . . . ,mk), over a field F . In the first step, z random keys,

(u1, . . . , uz), are generated and encoded with an (n − r, z) erasure code and stored

systematically on z nodes. In the second step, the k secrets, XORed with the keys and

the redundancy generated in the first step, are encoded with an (n, n− r) erasure code

and split between the remaining n − z nodes. The security of the scheme is ensured

13©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 2.4: Encoding process of (n = 9, k = 3, r = 4, z = 2) secure RAID (a) using two Reed-
Solomon codes, and encoding process of (n, k, r, z) secure RAID (b) using generator n× (z + k)
matrix.

when the erasure code used in the first step is a subcode of the erasure code from the

second step. This ensures that the parity generated in the second step will not reveal

more information on the secrets than any other share, proof in the paper [39].

Figure 2.4 (1) shows the encoding in a (9,3,4,2) secure RAID scheme. The two keys,

(u1, u2), are encoded with a (5, 2) Reed-Solomon code (RS1) which generates three

parities, (pu1 , p
u
2 , p

u
3). These parities are XORed with the secret, (m1,m2,m3), and the

result is encoded with a carefully chosen (9, 5) Reed-Solomon code (RS2) to produce

the n shares. Decoding is done by obtaining the keys, encoding them with RS1, and

using the parities to reveal any mi or all of them. Thus, three shares are required

to decode one data share, and any five shares can reveal the entire secret. The data

can be recovered from up to four node failures. The encoding can also be done using

multiplication of a near-systematic n× (z + k) generator matrix by a vector of keys and

data elements, as depicted in Figure 2.4 (b).

Alternative constructions or secure RAID are based on array codes such as EVEN-

ODD. Table 2.1 summarizes known constructions and their constraints on k,r, and

z. We will use the construction based on Reed-Solomon code, which does not impose

any constraint on k, r, and z, and is easy to build using existing implementations of

Reed-Solomon code.

This scheme holds several desirable properties. First, its storage overhead is optimal

(k = n− r − z) as in the generalization of Shamir’s scheme. Second, the two encoding

steps are comparable in complexity to standard erasure codes. Since the keys are stored

systematically and every element of the secret is protected by exactly z keys, the number

of finite field operations for encoding is O(zk + (z + k)r). We refer to this property as

near-systematic encoding. Finally, a random read of a single share of the secret requires

accessing only a single encoded share and z keys, and the original share can be decoded

with only O(z) finite field operations. This is in contrast to accessing and decoding

14©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Erasure code k z r n XOR
only

Comment

Reed-Solomon Any Any Any k + r + z No
Variety of implementations. When
r = z = 1 the scheme will work only
for even k.

EVENODD [19] p− 2 2 2 p + 2 Yes

p is prime, limitation of the code.
k can be extended to other values
by addition of virtual nodes, this
complicates encoding and decoding.

STAR [38] p− 3 3 3 p + 3 Yes p is prime, limitation of the code.

RDP [23] p− 3 2 2 p + 1 Yes p is prime, limitation of the code.

B-codes [94] 2 2 2 6 Yes Only one parameter set possible.

Table 2.1: Available constructions of secure RAID and their constraints on the scheme
parameters k,r and z.

n− r shares in existing secret-sharing schemes (note that typically, n− r is considerably

greater than z).

2.3 Random Data Generation

Key-based encryption and secret-sharing schemes are only as secure as their random

data. In true random data, the value of one bit does not disclose any information on

the value of any other bit. Thus, if the keys are not truly random, an attacker can

derive some information about the encoded data.

True random data is generated by measuring a natural source of noise, such as

atmospheric or thermal noise, or hardware interrupts [20, 25, 32, 34, 35]. This method

produces unpredictable streams of data, but is rate-limited by the external noise

source and may require special hardware. Thus, true random data generators are

typically orders or magnitude slower than the data protection schemes that rely on

them. In addition, most of them cannot be used safely on virtual machines that share

hardware [45].

An alternative approach uses a pseudo-random number generator (PRNG). A PRNG

is a deterministic algorithm that, given an initial value (seed), generates a sequence of

uniformly distributed numbers. A cryptographically secure PRNG (CSPRNG) generates

a random output that is computationally indistinguishable from true random data.

Thus, it is considered computationally secure to use CSPRNGs to generate encryption

and secret-sharing keys. CSPRNGs are typically implemented with a cryptographic

function, whose seed must be generated by a true random generator.

2.4 Challenges and Goals

The schemes described above have been designed with different objectives and trade-offs

between storage and computational overhead, maintenance, and level of security. At

the same time, their performance depends on recently introduced acceleration methods

15©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

for encryption, random data generation, or finite field operations. Thus, previous

evaluation results do not provide a clear picture of how these schemes compare in terms

of application-perceived read and write throughput. For example, AONT-RS has been

shown to outperform Shamir’s secret-sharing scheme, in a study that preceded both

secure RAID and hardware-accelerated encryption. Similarly, the complexity of secure

RAID has been shown to be lower than that of Shamir’s scheme and encryption, but

this theoretical result does not reflect the effects of hardware acceleration on each of

these methods. Finally, while secret sharing schemes rely on large amounts of random

data to provide information-theoretical security, we are not aware of any evaluation

that includes true random data generation.

To further complicate matters, the benefit of recent schemes and hardware improve-

ments depends on their specific implementation and on the storage system they are

applied to. The choice and combination of a random number generator, erasure code,

and encryption algorithm can determine which one becomes the bottleneck. Similarly,

the system bottleneck may be determined by the speed of the processor, the character-

istics of the storage devices, the topology of the network, and the interaction between

those components. Multi-cloud environments may further increase the sensitivity of any

given scheme to unstable storage and network throughput.

Our goal in this study is to close this gap by mapping the end-to-end costs of the

state-of-the art in data protection schemes. To that end, we examine how application

read and write throughput are affected by (1) random data generation, (2) hardware

acceleration, (3) storage overhead (4) storage type, and (5) network topology. Our

results reveal a different clear winner in each context: in-memory computation, in-house

LAN, and multi-cloud.

16©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3

Computational overheads

3.1 Evaluation Goals

We evaluate the following data protection schemes.

• Reed-Solomon, which provides only fault tolerance, is our baseline.

• Encryption, which encrypts the data with a key-based symmetric cypher and encodes

the result with Reed-Solomon for fault tolerance.

•AONT-RS, which hashes the encrypted data, combines the result with the encryption

key, and encodes the entire package with Reed-Solomon.

• Shamir’s secret-sharing scheme, which combines security and fault tolerance in

non-systematic encoding.

• Secure RAID, which combines security and fault tolerance in two encoding rounds

based on Reed-Solomon.

The goal of this section is to evaluate the computational overhead of the presented

schemes.

3.2 Methodology

We implemented all the data protection schemes in C++ for scheme performance evalu-

ation and in Java for the distributed objects store described in Chapter 4. Whenever

possible, we based our implementation on existing verified and optimized implemen-

tations of standard procedures. For Reed-Solomon and matrix multiplications over

finite fields, we used Jerasure library [74], which enhances finite field operations using

vectorization, i.e SIMD instructions. We used only finite field operations over GF (28),

where each byte is an element in the field, this allows efficient implementation and

convenience of working in byte granularity.

3.2.1 Cryptographic Functions

We used the OpenSSL cryptographic library [6], for all ciphers and cryptographic hash

function implementations.

17©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Component Implementation Provider Comments

True RNG
/dev/random Linux

Environmental noise as random source, in-
cluding interrupts and RdRand

RdRand Intel Thermal noise as random source

CSPRNG
/dev/urandom Linux

Based on ChaCha, seeded periodically by
the OS

AES
OpenSSL (C++), SunJCE
(Java)

AES 256 counter mode

PRNG
rand() <cstdlib>

Not secure
XOR xoroshiro128+

MD5
OpenSSL (C++),

128 bit hash
Hashing SHA-1

Sun (Java)
160 bit hash

SHA-256 256 bit hash

Symmetric key
ChaCha

OpenSSL (C++),
Bouncy Castle (Java)

Stream cipher, 128 bit keys, used in
TLS [26, 53]

encryption
AES

OpenSSL (C++), SunJCE
(Java)

Block cipher, hardware accelerated using
128, 256 bit keys

Erasure coding Reed-Solomon (RS)
Jerasure (C++),
Backblaze (Java)

Optimized using vectorization with SIMD
instructions

Data dispersal AONT-RS
Our implementation
(C++/Java)

AES-128 + SHA-1

Secret sharing

Shamir’s Our implementation
(C++/Java)

Uses Jerasure for finite field operations in
C++

Secure RAID Our implementation
(C++/Java)

Based on Reed-Solomon

Table 3.1: Implementation details of the data protection primitives and schemes used in our
evaluation.

Symmetric-key ciphers. We examined two different ciphers. ChaCha is a stream

cipher [13] used in various secure communication protocols, such TLS [53]. AES is a

popular symmetric-key block cipher [24], which is stronger than ChaCha, available in

various modes of operation. We used AES in counter (CTR) mode, in which the data is

XORed with a stream of values produced by encrypting successive values of a counter.

The security level of the cipher is determined by the size of the key, where 256 bits is the

strongest and 128 bits is minimal and thus, weaker. AES cipher also has performance

advantage as it can be accelerated in hardware via instruction set AES-NI [31] in x86

architecture. AES processor instructions is also available in other architectures, such as

ARM [3], Oracles SPARC [10] and IBM’s POWER7+ [17].

Cryptographic hash functions. We considered three cryptographic hash func-

tions. MD5 generating a 128-bit hash value, SHA-1 generating a 160-bit hash value

and SHA-256 generating a 256-bit hash value. These hash functions are widely used

for message authentication codes [49].

3.2.2 Random Number Generators

We examined several pseudo-random number generators, both secure and non-secure.

We seeded all generators with values with true random data from /dev/random, although

the size of the seed differed for different generators. We used two CSPRNGs, based on

different cryptographic functions for secure random generation. Our AES CSPRNG

18©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

implementation uses AES-256 in CTR mode, initialized with a 256-bit key and a random

counter. /dev/urandom is native CSPRNG in Linux, it is based on ChaCha in Linux

kernel 4.9. The generator is seeded periodically by the operating system. This is

considered a vulnerability—users cannot verify that the output does not depend on

previous output [32].

We also employed two true random number generators available on our evaluation

setup. First is Linux’s /dev/random, which is seeded constantly by the operating system.

RdRand is Intel’s digital random number generator, seeded using thermal noise in the

chip.

For evaluation purposes, we used two non-cryptographic PRNGs. We denote rand()

the basic PRNG supplied in <cstdlib> in C++. Xoroshiro128+ (XOR) is the fast

PRNG [90].

We also use a “fake” PRNG, None , which reads data from a predefined array in

memory. This served as our baseline for evaluating the effect of random data generation

on the throughput of the schemes that require it.

3.2.3 Implementation of Data Protection Schemes

For encryption, we used AES-256 and ChaCha. We generated keys from /dev/random,

and stored them locally for decryption. Secure key management is outside the scope of

this evaluation. After the data was encrypted parity chunks were constructed using RS

erasure code. For AONT-RS, we used AES-128 (for encryption) and SHA-1 (for the cryp-

tographic hash), as these were the fastest combination available. For the secret-sharing

schemes, we used the PRNGs specified above. We implemented Shamir’s scheme and its

generalization using finite field matrix multiplication in Jerasure. Our secure RAID im-

plementation is based on the Reed-Solomon implementation from Jerasure library as well.

Implementation details of the data protection primitives and schemes are summarized

in Table 3.1.

3.2.4 Experimental Setup

We performed our evaluations on an 8-core Intel Xeon E5-2630 v3 at 2.40 GHz with

128 GB RAM, running Linux kernel 4.9.0. We first encoded and then decoded 512

4-MB objects (2 GB in total) and measured the single-threaded throughput of each

data protection scheme. We used random objects generated before the start of the

experiment. In each experiment, we varied k (2,4,8,16,32), and r, z (1,2) whenever they

were applicable, to reflect a wide range of overheads.

We measured the throughput of each scheme in one encode and three decode use-

cases.

• Encode: n shares were generated from k data chunks. n varied depending on the

scheme, either n = k+r for encryption based schemes or n = k+r+z for secret-sharing.

19©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Ciphers Hash functions (digest)
ChaCha AES-128 AES-256 MD5 SHA-1 SHA-256

Encrypt 841.54 4537.93 3379.98
606.65 853.73 377.9

Decrypt 846.62 4569.03 3425.19

Table 3.2: Measured throughput (MB/s) of cryptographic functions. For ciphers, encryption
and decryption throughput; for hash functions, digest throughput. AES has significantly higher
throughput thanks to hardware acceleration.

True RNG Secure PRNG Non-secure PRNG
/dev/random RdRand /dev/urandom AES Basic XOR

1.15 54.82 214.07 3379.98 420.69 798.55

Table 3.3: Measured throughput (MB/s) of random data generation. True random data
generation is too slow for anything but seeding. AES secure PRNG is fastest thanks to hardware
acceleration.

• Stripe decode: the k data chunks were generated from k or k + z shares, depending

on the scheme.

• Degraded read: to emulate one or two lost shares, the k data chunks were generated

from the surviving data and parity shares.

•Random access: one random data chunk from each stripe was requested and decoded

by each scheme according to its properties.

3.3 Results

3.3.1 Cryptographic Function Overhead

For the ciphers in our schemes, we measured the encryption and decryption throughput,

and for the hash functions we measured the digest throughput. Our results, summarized

in Table 3.2, show that AES achieves a speedup of up to 5x compared to Chacha, thanks

to its hardware acceleration.

3.3.2 Random Number Generation

We measured the throughput of six RNGs detailed in Table 3.1. Our results, summarized

in Table 3.3, show that true random data generation is too slow for any practical purpose

on a general purpose machine. The AES CSPRNG is the most efficient method, even

more than the non-secure PRNGs, thanks to hardware accelerated cipher.

We measured the encoding throughput of Shamir’s scheme and secure RAID with

random data generated with the different methods to evaluate their overall effect on

performance. Figure 3.1 shows the results for k = 2, 8, 32 and r = z = 2. Our results

show that the random data generation bottleneck can be eliminated if we are willing

to replace information theoretical security with computational security, which can be

achieved by hardware accelerated CSPRNG.

20©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 3.1: Effect of random data generation on secret-sharing schemes with different random
rates and r = z = 2. Using hardware accelerated secure PRNG minimizes the overhead.

To reason about these results, we define the random rate as z
k , the ratio between

the amount of random and data bytes in a stripe. Both schemes had the same random

rate. Indeed, when k = 2 and the random rate was 1, both schemes required 4 MB

of random data per 4-MB stripe, and their performance was similar with RdRand,

which was the bottleneck. The effect of random data generation decreased with the

random rate as k increased. Even with a random rate of 0.0625, RdRand reduced secure

RAID encoding throughput by 3x. In the rest of our evaluation we used only AES

CSPRNG. Our evaluation of available random number generation techniques leads to

our first conclusion, that the low throughput of true random data generation precludes

information-theoretical security in real system implementations.

3.3.3 Encode/Decode Performance

We measured encode, decode and degraded decode throughput of all the schemes. We

draw three main conclusions from these results: (1) Secure RAID completely eliminates

the computational bottleneck of secret sharing. (2) Hardware accelerated encryption

removes computational overhead and outperforms the other schemes. (3) AONT-RS

performance is limited by the cryptographic hash function.

Figure 3.2 shows encode (a) decode (b) throughput of all schemes with r = z = 2

and different k values. Reed-Solomon was omitted from the decode experiment because

it does not require any decoding. For each encryption based scheme (AES, ChaCha,

AONT-RS), the throughput is the same for all k. Hardware accelerated AES performed

best among these schemes. AES scheme encoding throughput is lower (2160 MB/s), than

AES cipher encryption throughput (3380 MB/s in Table 3.2), as the scheme includes

Reed-Solomon encoding as well. AONT-RS had the lowest encoding and decoding

throughput, about 650 MB/s. This is due to the overhead of hash calculation, which is

21©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 3.2: Encoding (a) and decoding (b) with r = z = 2. The high overhead of encryption
is eliminated by hardware acceleration. AONT-RS suffers the overhead of non-accelerated
cryptographic hash function. Shamir’s high overhead prevents its throughput from increasing
with k, despite the decrease in random rate. In decoding secure RAID outperforms all the
schemes, thanks to its near-systematic encoding.

prohibitive because of its low throughput.

Interestingly, Shamir’s encoding and decoding throughput did not increase with k,

despite the decreasing random rate. The reason is its non-systematic encoding—the

number of operations for encoding grew quadratically with k, and became the bottleneck

for k ≥ 4. Thanks to the near-systematic encoding in secure RAID, its encoding

throughput increased with k, as its random rate decreased. Its encoding throughput

with k = 8 was 1890 MB/s, 55% higher than with k = 2, and only 12% lower than

hardware accelerated AES. Secure RAID decode throughput is fastest at about 4200

MB/s.

Sensitivity to r and z

We repeated encode and decode measurements with different r and z combinations. The

results showed similar trends to encoding and decoding with z = r = 2, while efficient

schemes were more sensitive to changes in r and z.

Reducing r from 2 to 1 increased the encoding throughput of all schemes with all k

values. The increase was higher for the efficient schemes in which parity generation was

responsible for more of the overall overhead.

Figure 3.3 (a) shows encode throughput of all schemes with with r = 1 and z = 2.

Encoding throughput increased by over 100% for Reed-Solomon and about 30% for

AES and secure RAID, and by 6% for ChaCha and for AONT-RS. In Shamir’s scheme,

the relative weight of one parity generation decreased with increase in k, due to its non-

systematic encoding of the remaining n− 1 shares. Its encoding throughput increased

22©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 3.3: Encoding with r = 1, z = 2 (a) and with r = 1, z = 2 (b); and decoding with
z = 1 (c). Changing r does not influence systematic decoding, and changing z is only applicable
for secret-sharing schemes.

by to 22% with k = 2 and only by 4% with k = 32.

Reducing z from 2 to 1 reduced the random rate and increased encoding and decoding

throughput of both secret-sharing schemes. Here, too, the increase was higher in secure

RAID which is the more efficient scheme.

Figure 3.3 shows encode (b) and decode (c) throughput of all schemes with r = 2 and

z = 1. Secure RAID encoding and decoding throughput increased by about 45% and

70% respectively. In Shamir’s scheme encoding and decoding complexity depends on k,

thus the influence of reducing z decreased with increase in k. Its encoding throughput

increased by 9% (k = 32) to 70% (k = 2), and decoding throughput increased by 6%

(k = 32) to 85% (k = 2).

Degraded Decode Performance

Figure 3.2 (c) shows the decode throughput of each scheme when two systematic shares

are unavailable, and r = z = 2. Reed-Solomon reconstruction stands as baseline to

other schemes, as almost all of them include Reed-Solomon reconstruction as part of

degraded decode process.

For encryption based schemes, additional reconstruction overhead affected only AES,

whose slowdown was about 36%. Decryption remained the bottleneck of ChaCha and

AONT-RS, whose throughput was not affected by the recovery operations. Shamir’s

scheme was also unaffected, but for a different reason. Due to its non-systematic

encoding, every decode had to “recover” k data shares from n− r shares, and the choice

of shares did not the affect decoding method. The throughput of degraded decode with

secure RAID was roughly half that of regular decode. The throughput increased slightly

23©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 3.4: Degraded decode throughput with r = z = 2 and two unavailable systematic shares.
Data recovery affects only schemes with efficient decoding.

with an increase in k, as the relative portion of reconstructed shares decreased.

Random Access Decode Performance

Figure 3.5 shows the average decoding latency of a single share in a 4 MB object for

each scheme. The latency was averaged over decoding of a random chunk from each

of the 512 objects. The difference between the data protection approaches is clearly

evident, and demonstrates the major limitation of AONT-RS and the major advantage

of secure RAID.

The encryption-based schemes had to decode only the requested share, and thus

their latency decreased as k increased and the share size decreased. Their measured

throughput (not shown) was comparable to that of decoding a full stripe. AONT-RS,

on the other hand, had to hash all k shares to obtain the encryption key. This overhead

was the bottleneck, preventing the latency from decreasing with share size.

Shamir’s scheme had to process almost the entire stripe, k + z shares, to decode a

single share, still as size of the share decreased the scheme had less data to decode, and

thus the decode latency decreased as well. Secure RAID, on the other hand, required

only z+1 shares to decode a single share, and it achieved fastest random access decoding,

16–30% faster than AES.

Conclusions

The results of our measurements of encode and decode performance lead to our second

main conclusion, that secure RAID completely eliminates the computational bottleneck

of secret sharing. Secure RAID is the fastest scheme for decoding, and its encoding

throughput is exceeded only by hardware accelerated encryption.

24©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 3.5: Random access average decode latency with r = z = 2. Random access performance
is a major drawback of AONT-RS.

25©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

26©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4

End-to-End Evaluation

4.1 Evaluation Goals

In the previous chapter, we identified the bottlenecks of the different data protection

schemes with respect to their computational overheads. Here, we wish to understand

the effect of the various system-level parameters on these bottlenecks, and whether new

bottlenecks are introduced. We conducted our evaluation in two different environments.

The LAN setup consisted of five servers connected by a high speed network. The

multi-cloud setup consisted of up to 37 virtual servers on Amazon Elastic Compute

Cloud (EC2) [1], deployed in multiple geographical regions and different storage types.

4.2 Methodology

4.2.1 Object Store Implementation

We implemented a distributed object store prototype, which consists of a client that

connects to a specified number of servers for transmitting and receiving data shares.

We chose Java for our implementation because it provides full and efficient thread

management and communication services. As a result, we re-implemented all our data

protection schemes in Java. (see details in Table 3.1).

For consistency, we compared the single threaded encoding and decoding throughput

of the data schemes in Java and in C++. Table 4.1 shows the results for k = 8, r = z = 2,

with the slowdown of the Java implementation compared to that in C++. Although

the JNI modules employ optimizations such as vectorization, the achieved increase in

throughout is masked by the overhead of data movement between Java and the native

RS AES ChaCha AONT-RS Shamir S-RAID

Enc 312.48 (x19) 159.09 (x14) 89.55 (x8) 70.4 (x9) 37.08 (x20) 128.61 (x14)

Dec 664.5 (x5) 121.29 (x7) 111.75 (x6) 65.44 (x15) 297.89 (x14)

Table 4.1: Measured throughput (MB/s) of main data protection schemes implemented in Java
for k = 8, r = z = 2 and slowdown (in parentheses) compared to the C++ implementation.

27©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 4.1: A high-level illustration of our object store, with write and read operations. In
the write, object is encoded creating n shares, which are sent to n consecutive servers. In read,
n− r shares are requested from the servers on which they reside and the object is decoded from
these shares.

modules. To ensure that encoding and decoding are not the bottleneck in our LAN and

multi-cloud setups, the client executes them using a pool of four threads. Our results

show that this removes the computational bottleneck for all schemes except Shamir’s

secret sharing.

Communication was handled by a separate thread for each server and used a secure

protocol (TLS v1.2). At the servers, a separate thread managed I/O, to allow I/O and

communication to proceed in parallel. Encoding and decoding were executed at the

client, which supports one write and four read operations, as follows.

•Write: an object of 4MB was encoded into a stripe of n shares with one of our data

protection schemes, and transmitted to n servers.

• Object read: n− r shares were requested from their servers and decoded.

• Degraded read: n− r shares were requested, assuming up to r servers were unavail-

able. The shares were decoded, possibly with a degraded decode operation.

• Random read: one random share was decoded from each object. The number of

servers contacted for this share depended on the data protection scheme.

• Greedy read: all n shares were requested from their servers, and decoding began as

soon as the first n− r shares were received, possibly as a degraded decode.

Figure 4.1 depicts the high-level representation of the object store and its main

operations to write and read objects as described earlier. The client is connected to

s servers, shares of each object are distributed to n different servers. For object read

the client requests the systematic shares from n− r servers, in case of encryption based

scheme n− r = k and in case of secret-sharing scheme n− r = k + z.

Algorithm 1 presents the pseudocode of the write operation executed by the client.

The main thread only reads the objects and submits them to the thread pool for

28©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 1 Client operation on write object

1: function writeObject(object, servers, codec, n, k, z)
2: obj shares = codec.encodeObject(object) . executed via thread pool
3: obj servers =getObjectServers(object.ID, servers, n) . pseudocode below
4: for all server, share ∈ obj servers, obj shares do
5: server.pushShareToSendQ(share) . shares are sent asynchronously
6: end for
7: end function

encoding. After the shares are created by a thread in a thread pool, the shares are

pushed to the send queue of the appropriate server socket.

Algorithm 2 Client operation on object read

1: function readObject(object ID, servers, codec, n, k, z)
2: obj servers =getObjectServers(object ID, servers, (n− r))
3: for all server ∈ obj servers do
4: server.sendRequest(object ID) . each server contains at most one share
5: end for
6: end function
7: upon event share received from server do
8: shares.append(share)
9: if len(shares) ≥ (n− r) then

10: object = codec.decodeObject(shares) . executed via thread pool
11: end if

Algorithm 2 contains pseudocode of the basic read objects operation. First n− r

systematic shares of the objects are requested from the appropriate servers. Then in

an asynchronous event handler after the n− r shares received from servers, object is

submitted for decoding via thread pool. For degraded decode we select up to r servers

to be unavailable and request the n − r shares only from available servers. Random

share read is implemented slightly differently, as each scheme requires to read different

number of shares per for single share decode. The only difference is in the selection of

servers from which to read which is delegated to the codec object, and implemented for

each scheme separately.

Algorithm 3 Getting servers that store objects shares, computes first server and the
rest are subsequent servers, in an round-robin fashion.

1: function getObjectServers(object ID, servers, shares num)
2: servers num =len(servers)
3: obj servers = ∅
4: for 0 ≤ i < shares num do
5: server = (i + object ID · n) mod servers num
6: obj servers.append(servers[server])
7: end for
8: return obj servers
9: end function

29©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 3 contains our method of selecting servers for storage of object shares.

We calculate the server that stores the first share and other shares are stored in a

subsequent servers in a round-robin fashion.

4.2.2 Evaluation Setup

We used the same number of servers, s, for each k. We chose s so that s ≥ k + 4, to

ensure the n shares were distributed to n different servers. For optimized load balancing,

we further ensured that gcd(s, n) = 1. We distributed shares to servers in a round-robin

fashion, so that the first chunk of object i was sent to server i ·n(mod s), and subsequent

shares were sent to subsequent servers. For each parameter set and data protection

scheme, we wrote a series of 4MB random objects, and then read them with the four

read types. The throughput for each operation was measured in a separate experiment

and run on a new JVM with clean client and server caches1.

LAN Setup

Our local cluster used five machines identical to the one described in Section 3, connected

by a 10Gb Ethernet network and equipped with four Dell 960GB SATA SSDs. The

client ran on a dedicated machine, and each of the remaining machines was used

for up to ten virtual servers. Thus, in some of our configurations, some SSDs were

serving up to three virtual servers. We ran all combinations of r = {1, 2}, z = {1, 2},
and (k, s) = {(2, 7), (4, 11), (8, 13), (16, 23), (32, 37)}. For each parameter set and data

protection scheme, we wrote and read 512 objects, 2 GB in total.

Multi-Cloud Setup

We performed the same experiments in the multi-cloud setup, with 256 objects, r = z = 2

and (k, s) = {(2, 7), (8, 13), (16, 23), (32, 37)}. We ran each experiment four times and

present the average and standard deviation. We used the same client machine for our

multi-cloud setup. We used two instance types for our virtual servers on Amazon’s

EC2 [7]:

• c4.large had two virtual CPUs, 3.75 GiB of RAM and “moderate network band-

width”.

• c4.xlarge had four virtual CPUs, 7.5 GiB of RAM and “high network bandwidth”.

We configured our servers with three storage types:

• The General Purpose SSD is the default storage provided by Amazon Web Services

(AWS), with baseline throughput of 100 IOPS.

• The Provisioned IOPS SSD provided 50 IOPS per 1 GB. We created volumes of 50

1We do this by applying two simple commands: sudo echo 3 | sudo tee

/proc/sys/vm/drop caches && sudo sync

30©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

GB, with 2500 IOPS per volume.

• The Throughput Optimized HDD supported up to 500 MB/s for sequential workloads.

Our default setup consisted of c4.xlarge machines and general purpose SSDs. We

compared the different storage and machine types in a separate experiment, described

below.

AWS data centers are divided into regions, which correspond to distinct geographical

locations and are completely independent. Within a region, isolated data centers are

known as availability zones. We used separate zones to simulate independent cloud

providers. We deployed EC2 instances in 14 different regions and two or three availability

zones in each region: Ireland (3), Frankfurt (3), London (3), N. Virginia (3), Ohio (3), N.

California (3), Oregon (3), Canada Central (2), Sao Paolo (2), Mumbai (3), Singapore (2),

Seoul (2), Tokyo (2), and Sydney (2).

We note that our our client machine was located in Israel, which is connected to

Europe by optical fiber cables [8].

4.3 Results

The results of our end-to-end evaluation demonstrate how the additional storage overhead

of the secret-sharing schemes increases their storage and network bandwidth and limits

their performance. They also reinforce the limitation of AONT-RS and Shamir’s scheme

when it comes to small random accesses.

4.3.1 Write/Read Throughput

LAN Performance

Figure 4.2 shows write (a) and read (b) throughput of all schemes with r = z = 2 and

k = {2, 8, 16, 32} in the LAN setup. The write and read throughput of Reed-Solomon,

AES, and secure RAID increased with k thanks to the reduction in storage overhead

and the increased I/O parallelism. Our cluster had 16 SSDs whose utilization increased

until the number of servers exceeded the number of devices. Thus, the throughput

was maximal with k = 16 and slightly lower with k = 32, when the overhead of the

additional communication threads was considerable.

As the I/O read throughput was higher than write throughput, because less data

is read than written per stripe and reading speed in SSD is generally faster, ChaCha

and AONT-RS schemes reached their maximal read throughput with k = 4. It did not

increase further with k because of their computational overhead.

The read and the write throughput of Shamir’s scheme did not increase beyond

k = 4 due to its computational overhead, which was the bottleneck.

In secure RAID, the high storage overhead limited its throughput with k ≤ 4. With

k = 16, the throughput of secure RAID was about 10% lower than that of AES. This

was roughly the difference between the storage overhead of those schemes. Encryption

31©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 4.2: Write (a) and read (b) throughput in the LAN setup with r = z = 2. I/O
throughput becomes the bottleneck of all schemes except Shamir’s secret sharing. Computation
remains the bottleneck for ChaCha, AONT-RS, and Shamir’s scheme.

wrote n = 18 shares and read k = 16 per object, while secure RAID wrote n = 20 and

read k + z = 18 shares.

We repeated the write measurements with different r and z combinations. The

results showed similar trends to those in Figure 4.2. The effect of reducing both r and

z was similar to the effect this had on encoding throughput, yet for different reason.

Reducing r from 2 to 1 increased the throughput of all schemes due to the reduced

storage overhead. The increase was lower in Shamir’s scheme for k ≥ 4 , where encoding

was the limiting factor. With k = 2, the reduction in r increased throughput of all of

the schemes by 30-33%. Reducing z from 2 to 1 had a similar effect on both secret

sharing schemes.

Multi-Cloud Performance

Figure 4.3 shows the write (a), read (b), and greedy read (c) performance in the multi-

cloud setting. The results are averaged over four executions, with error bars marking the

standard deviation. The smallest multi-cloud (s = 7) was deployed in European regions

only. We increased the size of the multi-cloud by deploying instances in additional

regions, in order of their observed throughput. As a result, the variability in the

throughput provided by different servers increased, increasing the standard deviation of

our results.

The write throughput increased with k = 8 and k = 16, but then decreased with

k = 32. With k ≥ 8 the difference between the schemes was no longer noticeable.

The read throughput decreased as the number of servers increased, due to the delays

induced by high-latency network connections. Our results for the largest multi-cloud

32©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 4.3: Write (a), read (b) and greedy read (c) throughput in multi-cloud setup, on
c4.xlarge instances with general purpose SSD storage and r = z = 2. In multi-cloud en-
vironments, the network bandwidth dominates performance. The amount of redundancy (r)
determines the number of high-latency servers the system can tolerate.

33©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 4.4: Random access latency in LAN setup with r = z = 2. AONT-RS and Shamir’s
scheme require k and k + z shares respectively for decoding a single chunk.

(s = 37) demonstrate a pathological case; this deployment included two servers each

in the Tokyo and Singapore regions, whose observed download throughput was 1.3

Mb/sec and 100Kb/s, respectively. This caused all schemes to achieve extremely low

throughput.

The greedy read optimization successfully increased the read throughput with s = 13

and s = 23, by eliminating the bottleneck of the two slowest servers in each experiment.

However, the setup with s = 37 included two more slow servers, and the redundancy

(r = 2) was not high enough to eliminate all of them.

4.3.2 Random Access Latency

Figure 4.4 shows the average latency of all schemes when reading one share from a

stripe, with r = z = 2 in the LAN setup. These results reinforce the limitation of

AONT-RS and Shamir’s scheme with respect to small random accesses.

The latency of Reed-Solomon, AES, ChaCha and secure RAID decreased with k,

as the size of the requested share decreased. Secure RAID reads z + 1 = 3 shares,

because it requires two key shares to decode the data share, while the other schemes

read only one. AONT-RS must read and hash the entire object, and thus its latency

was higher but decreased slightly with an increase in k, thanks to higher I/O parallelism.

Shamir’s scheme also reads the entire object. Thus, its latency also decreased as k

increased. However, for k > 8 its latency increased with k due to the increased decoding

complexity.

34©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 4.5: Write (a), read (b) and greedy read (c) throughput in multi-cloud setting with
k = r = z = 2 and two storage and instance types. ‘L ’ is c4.large and ‘XL’ is c4.xlarge.
Network is the bottleneck in regular reads, but HDDs improve the throughput of write and
greedy read operations.

35©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4.3.3 Storage and Server Type

We repeated the experiment in the small multi-cloud (s = 7) with all combinations of

machine and storage types. The results for the Provisioned IOPS SSD were identical to

those of the General Purpose SSD, and thus we omit them from our discussion.

Figure 4.5 shows the write, read, and greedy read performance with instances de-

ployed on machines with moderate (c4.large) and fast (c4.xlarge) network connection,

with SSD and HDD storage.

The long-distance network bandwidth was the main bottleneck in this experiment,

and thus the machine types had little to no effect on the throughput of all operations in

all schemes. In contrast, the storage type did affect the throughput of the write and

greedy read operations. These operations are less sensitive to the network performance

than read, and thus the throughput of all schemes increased with the increase in storage

bandwidth provided by the Throughput Optimized HDD, compared to SSD.

4.3.4 Conclusions

Our end-to-end evaluation, combining both the LAN and multi-cloud setups, leads to

our final two conclusions. First, once storage and network bottlenecks are introduced,

secret sharing is outperformed by encryption based techniques due to its additional

I/O and transfer overhead. Finally, only encryption and secure RAID provide efficient

access to small random data chunks.

36©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5

Discussion

Our evaluation focused on read and write throughput, which are major objectives in

storage-system design. However, additional factors affect the applicability and appeal

of the different data-protection approaches.

5.1 Full Node Repair

Recovery of a failed node entails transferring data from the surviving nodes to the

replacement node in charge of reconstructing the lost data. The replacement node

necessarily gains access to more than z shares, which creates a security risk. Several

solutions to this problem entail increased storage overhead [9, 70, 80, 82, 89] which, as

our results indicate, will likely reduce read and write throughput. In POTSHARDS [87],

a protocol for secure reconstruction is proposed, protecting the data in case z = 1, i.e. at

most one eavesdropper. The proposed protocol offers reconstruction using simple parity,

but can be modified to other types of parity. As part of the protocol, an additional

random mask is transferred with every share, doubling the repair network cost. This

protocol will not suffice if two or more nodes are compromised. Methods for minimizing

this cost and general reconstruction protocol for any z are studied in [40, 47, 75, 76].

Reconstruction does not compromise the security of encryption based schemes in which

the keys are managed in separate secure stores. This is done in Hybris [27], where the

keys are stored together with the meta-data in a private cloud, which provides added

security.

5.2 Deduplication

Storage service providers eliminate duplicate data from their systems in order to reduce

storage and network costs [28, 29, 85, 95]. Such duplicates cannot be identified when

data is encoded before it is uploaded. Convergent encryption, in which the encryption

key is generated by a cryptographic hash of the data, can successfully alleviate this

problem [57, 86]. A similar solution can be applied to secret-sharing schemes [55].

37©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

However, our results indicate that this will significantly reduce encoding throughput,

unless both encryption and hashing are hardware accelerated.

5.3 Pricing

Cloud resource pricing depends on the location of the servers, the amount and type of

storage attached to them, and the I/O and network bandwidth they use. Therefore

additional storage overhead not only limits the performance of the schemes, but is also

more costly for the user. Furthermore, the additional cost of downloading entire stripes

during random access or z additional shares in each download may rule out some of the

schemes we evaluated.

5.4 Storage Types

Our evaluation provides some insight into the effect of several technological trends. As

storage-class memory and RAM-based storage [68] gain popularity, the bottlenecks in

the data path shift from storage to computation. In such architectures, the bottlenecks

we identified in Section 3 may no longer be masked by high storage and network costs.

This may increase the benefit from low computational overhead in schemes like secure

RAID, although the additional data transfer they incur may remain the bottleneck. At

the same time, hardware acceleration of common complex operations may be applied

to additional schemes. Intel’s ISA-L acceleration library provides an interface for

accelerated Reed-Solomon encoding and cryptographic hashing, which might also be

leveraged for random data generation. Such improvements may affect the bottlenecks

we identified in Section 3.

5.5 Device Types and Network Overhead

In our evaluation, we measured the computational overhead of the schemes and their

overall throughput on an enterprise-class server machine with high-end CPU and a

large memory. However, in the general case, data protection is performed on all types

of devices, from hand-held devices and small single-board computers running in home

appliance devices to special high-performance computing (HPC) machines processing

data at petabyte-per-second rates.

When data protection is running on mobile device, which have limited RAM and

processing power, the computational overhead may become critical. Furthermore, the

computational overhead will directly influence power consumption (or battery lifetime),

which is also a limited resource in such devices. Nevertheless, lately computational power

of mobile devices increased and new hardware acceleration techniques for cryptographic

functions [3] were introduced. Thus, the bottleneck is now the network bandwidth.

Currently the fastest available cellular network throughput is up to 2.6 Gbit/s [2] per

38©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

cell (meaning it will be divided between all of the users in that cell’s area), while the

multi threaded encoding and decoding throughput of AES on new Qualcomm chipset is

approximately 5 GB/s [81].

On a laptop device the computational overhead is less critical—large amounts

of RAM and powerful CPUs with special instructions sets for hardware accelerated

cryptographic functions are already a standard. The fastest available wireless network

achieves a throughput of up to 1.3 Gbit/s per work station [4]. However, when the

data is uploaded and downloaded in a realistic WAN configuration, the throughput will

likely be much lower. For example, in a 100 Mbit/s Internet connection in Israel, we

measured a download speed of 60-35 Mbit/s and an upload speed of 5-2 Mbit/s. Thus,

for a client running on laptop in standard home environment the network will become

the bottlenecks.

39©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

40©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 6

Related work

To protect data in a distributed storage system, several aspects of security must be

combined. Data integrity refers to ensuring that the data is not modified by anyone

other than an authorized user. This is usually obtained by adding cryptographic hashes

as signatures to the data before it is stored [27, 33, 50]. A consensus mechanism

ensures that file writes, updates, and deletes are only performed by authorized users

on a threshold number of nodes. Authorized users are authenticated by a separate

interface, which also verifies user permissions using tokens, access control lists, or other

schemes [54, 62, 64]. Communication between the client and the provider’s servers, as

well as between servers of the same provider, is secured by the network protocols they

use [26, 93]. These mechanisms are orthogonal to the scheme used for securely storing

the data.

Designing a reliable storage system on a set of untrusted nodes is challenging in several

aspects. Early designs that targeted peer-to-peer networks, such as OceanStore [50],

Pond [79], and Glacier [33], addressed access control, serialized updates, load balancing,

routing, and fault tolerance. They all assume the data has been encrypted prior to

being distributed, while maintenance of encryption keys remains the responsibility of

the clients. The encrypted data is encoded with Reed-Solomon erasure codes in order

to ensure its durability in the face of large scale node failures.

Most multi-cloud architectures follow a similar approach. MetaStorage [12] addresses

the durability of the data by replication, and relies on Byzantine agreement protocol

for object updates. A slightly different approach is taken in Hybris [27]: metadata

containing signatures of the data is replicated in a private and secure cloud, while the

data is dispersed between multiple public clouds. This ensures strong consistency by

leveraging strong consistency of metadata stored off-clouds to mask the weak consistency

of data stored in clouds. DepSky [14] and SCFS [15] incorporate encryption into their

client, along with a secret-sharing scheme for securely storing the encryption keys. In all

these systems, erasure coding is performed on the encrypted data, as in our evaluation.

Several studies proposed that the storage overhead of secret-sharing schemes be

reduced by reducing the capacity of individual shares. One approach is to store only the

41©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

seed of the randomly generated data, which requires regeneration of this data during

the decoding process [88]. Our evaluation of the multi-cloud settings indicate that the

reduction in storage overhead (and thus, download bandwidth) may justify the increased

computational overhead.

Considerable theoretical effort has focused on reducing the computation complexity of

Shamir’s secret-sharing scheme while still making it information-theoretically secure [39,

41, 61]. In [52, 60] new secret-sharing schemes are proposed improving the computational

complexity of basic Shamir’s scheme, by requiring only binary (XOR) operations for

encoding and decoding. BP-XOR [91] is another secret-sharing scheme constructed based

on popular LDPC codes, with decoding executed using belief propagation technique,

achieving only linear number of XOR operations for both encoding and decoding.

Another approach is taken in SSMS (Secret-Sharing Made Short) [48] the information-

theoretical security is sacrificed, achieving computational security instead. However, our

results show that the cost of true random data generation is too high, due to the limited

rate of measuring external noise, which also may require special hardware. Further,

when encoding is performed on virtual machine that shares hardware, true random

generation cannot be used safely [45]. Therefore, any implementation of Shamir’s and

other secret-sharing schemes in a real system will only provide computational security

whose strength depends on the strength of the CSPRNG.

42©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 7

Conclusions

We performed the first comprehensive comparison of encryption-based and secret-sharing

schemes. Our evaluation shows that information-theoretical security is infeasible in real

system implementations, due to the high cost of true random data generation. Thus,

both approaches provide computational security. In terms of encoding and decoding

performance, secret sharing with secure RAID is comparable to (and sometimes better

than) hardware accelerated encryption.

Our end-to-end evaluation demonstrates how the bottleneck in real implementations

shifts from computational complexity to storage throughput (on local storage) and

network bandwidth (in cloud deployments). In these settings, encryption outperforms

secret sharing thanks to its minimal storage overhead. Thus, our results suggest that

encrypting the data and dispersing the keys with an efficient secret sharing scheme is

optimal for multi-cloud environments.

43©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

44©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Bibliography

[1] Amazon EC2. https://aws.amazon.com/ec2/, 2006.

[2] NSN and Sprint achieves huge leap in TD-LTE network speeds.

http://www.telecomtiger.com/Technology fullstory.aspx?storyid=

19712§ion=S210, Feb. 2014.

[3] ARM R© Cortex R©-A57 MPCore Processor Cryptogra-

phy Extension Technical Reference Manual. http:

//infocenter.arm.com/help/topic/com.arm.doc.ddi0514g/

DDI0514G cortex a57 mpcore cryptography trm.pdf, 2015.

[4] Motorola Modular Access Points Performance Review. http://

broadbandlanding.com/research/mmap/, 2017.

[5] Netskope Report Reveals Bulk of Cloud Services Still Not GDPR-

Ready. https://www.netskope.com/press-releases/netskope-report-

reveals-bulk-cloud-services-still-not-gdpr-ready/, Sept. 2017.

[6] OpenSSL. http://www.openssl.org, 2017.

[7] Amazon EC2 Instance Types. https://aws.amazon.com/ec2/instance-

types/, 2018.

[8] Submarine Cable Map. https://www.submarinecablemap.com/, Feb. 2018.

[9] A. Agarwal and A. Mazumdar. Security in locally repairable storage.

Manuscript, arXiv:1503.04244, 2015.

[10] D. Anderson. SPARC T4 OpenSSL Engine. https://blogs.oracle.com/

solaris/sparc-t4-openssl-engine-v2, 2015.

[11] A. Beimel. Secret-sharing schemes: a survey. In International Conference on

Coding and Cryptology, 2011.

[12] D. Bermbach, M. Klems, S. Tai, and M. Menzel. MetaStorage: A Federated

Cloud Storage System to Manage Consistency-Latency Tradeoffs. In IEEE

International Conference on Cloud Computing (CLOUD ’11), July 2011.

45©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://aws.amazon.com/ec2/
http://www.telecomtiger.com/Technology_fullstory.aspx?storyid=19712§ion=S210
http://www.telecomtiger.com/Technology_fullstory.aspx?storyid=19712§ion=S210
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0514g/DDI0514G_cortex_a57_mpcore_cryptography_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0514g/DDI0514G_cortex_a57_mpcore_cryptography_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0514g/DDI0514G_cortex_a57_mpcore_cryptography_trm.pdf
http://broadbandlanding.com/research/mmap/
http://broadbandlanding.com/research/mmap/
https://www.netskope.com/press-releases/netskope-report-reveals-bulk-cloud-services-still-not-gdpr-ready/
https://www.netskope.com/press-releases/netskope-report-reveals-bulk-cloud-services-still-not-gdpr-ready/
http://www.openssl.org
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.submarinecablemap.com/
https://blogs.oracle.com/solaris/sparc-t4-openssl-engine-v2
https://blogs.oracle.com/solaris/sparc-t4-openssl-engine-v2

[13] D. J. Bernstein. Chacha, a variant of salsa20. In Workshop Record of SASC,

2008.

[14] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. Depsky:

Dependable and secure storage in a cloud-of-clouds. Trans. Storage, 9(4):12:1–

12:33, Nov. 2013.

[15] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia, M. Pasin, and

P. Verissimo. Scfs: A shared cloud-backed file system. In USENIX Annual

Technical Conference (ATC ’14), June 2014.

[16] G. R. Blakley and C. Meadows. Security of ramp schemes. In Workshop on

the Theory and Application of Cryptographic Techniques, 1984.

[17] B. Blaner, B. Abali, B. M. Bass, S. Chari, R. Kalla, S. Kunkel, K. Lauricella,

R. Leavens, J. J. Reilly, and P. A. Sandon. Ibm power7+ processor on-chip

accelerators for cryptography and active memory expansion. IBM Journal of

Research and Development, 57(6):3:1–3:16, Nov 2013.

[18] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: an efficient scheme

for tolerating double disk failures in RAID architectures. IEEE Transactions

on Computers, 44(2):192–202, 1995.

[19] M. Blaum and R. M. Roth. On lowest density MDS codes. IEEE Transactions

on Information Theory, 45(1):46–59, 1999.

[20] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo. A

high-speed oscillator-based truly random number source for cryptographic

applications on a smart card IC. IEEE Transactions on Computers, 52(4):403–

409, 2003.

[21] D. Burihabwa, P. Felber, H. Mercier, and V. Schiavoni. A performance

evaluation of erasure coding libraries for cloud-based data stores. In IFIP WG

6.1 International Conference on Distributed Applications and Interoperable

Systems (DAIS ’16), 2016.

[22] C. Cachin, R. Haas, and M. Vukolic. Dependable storage in the intercloud.

Technical Report RZ 3783, IBM, May 2010.

[23] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and

S. Sankar. Row-diagonal parity for double disk failure correction. In USENIX

Symposium on File and Storage Technologies (FAST ’04), 2004.

[24] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced

Encryption Standard. Springer Science & Business Media, 2013.

46©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

[25] D. Davis, R. Ihaka, and P. Fenstermacher. Cryptographic randomness from

air turbulence in disk drives. In Annual International Cryptology Conference

on Advances in Cryptology (CRYPTO ’94), 1994.

[26] T. Dierks. The transport layer security (tls) protocol version 1.2. 2008.

[27] D. Dobre, P. Viotti, and M. Vukolic. Hybris: Robust hybrid cloud storage.

In Annual ACM Symposium on Cloud Computing (SOCC ’14), November

2014.

[28] F. Douglis, A. Duggal, P. Shilane, T. Wong, S. Yan, and F. Botelho. The

logic of physical garbage collection in deduplicating storage. In USENIX

Conference on File and Storage Technologies (FAST ’17), 2017.

[29] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang, and Q. Liu.

Accelerating restore and garbage collection in deduplication-based backup

systems via exploiting historical information. In USENIX Annual Technical

Conference (ATC ’14), 2014.

[30] V. Goel and N. Perlroth. Yahoo says 1 billion user accounts

were hacked. https://www.nytimes.com/2016/12/14/technology/yahoo-

hack.html, Dec. 2016.

[31] S. Gueron. Intel R© advanced encryption standard (aes) new instructions set.

Intel Corporation, 2010.

[32] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the linux random

number generator. In IEEE Symposium on Security and Privacy (S&P ’06),

May 2006.

[33] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly durable, decen-

tralized storage despite massive correlated failures. In USENIX Symposium

on Networked Systems Design & Implementation (NSDI ’05), 2005.

[34] M. Hamburg, P. Kocher, and M. E. Marson. Analysis of intel’s ivy bridge

digital random number generator. Technical Report, Cryptography Research

Inc, Mar. 2012.

[35] W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi. An integrated

analog/digital random noise source. IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, 44(6):521–528, 1997.

[36] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and

S. Yekhanin. Erasure coding in Windows Azure storage. In USENIX Annual

Technical Conference (ATC ’12), 2012.

47©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html

[37] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,

S. Yekhanin, et al. Erasure coding in windows azure storage. In USENIX

Annual Technical Conference (ATC ’12), 2012.

[38] C. Huang and L. Xu. STAR : an efficient coding scheme for correcting

triple storage node failures. In USENIX Conference on File and Storage

Technologies (FAST ’05), 2005.

[39] W. Huang and J. Bruck. Secure raid schemes for distributed storage. In

IEEE International Symposium on Information Theory (ISIT ’16), July 2016.

[40] W. Huang and J. Bruck. Generic secure repair for distributed storage. CoRR,

abs/1706.00500, 2017.

[41] W. Huang and J. Bruck. Secure raid schemes from evenodd and star codes.

In IEEE International Symposium on Information Theory (ISIT ’17), June

2017.

[42] W. Huang, M. Langberg, J. Kliewer, and J. Bruck. Communication efficient

secret sharing. CoRR, abs/1505.07515, 2015.

[43] W. Huang, M. Langberg, J. Kliewer, and J. Bruck. Communication efficient

secret sharing. IEEE Transactions on Information Theory, 62(12):7195–7206,

2016.

[44] J. Kastrenakes. Amazon’s web servers are down and it’s causing trou-

ble across the internet. https://www.theverge.com/2017/2/28/14765042/

amazon-s3-outage-causing-trouble, Mar. 2017.

[45] B. Kerrigan and Y. Chen. A study of entropy sources in cloud computers:

random number generation on cloud hosts. Computer Network Security, pages

286–298, 2012.

[46] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking

erasure codes for cloud file systems: Minimizing I/O for recovery and degraded

reads. In 10th Usenix Conference on File and Storage Technologies (FAST

’12), 2012.

[47] A. S. R. Koyluoglu, Onur Ozan and S. Vishwanath. Secure cooperative

regenerating codes for distributed storage systems. IEEE Transactions on

Information Theory, 60(9):5228–5244, Sept 2014.

[48] H. Krawczyk. Secret sharing made short. In Annual International Cryptology

Conference on Advances in Cryptology, 1994.

[49] H. Krawczyk, R. Canetti, and M. Bellare. Hmac: Keyed-hashing for message

authentication. 1997.

48©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://www.theverge.com/2017/2/28/14765042/amazon-s3-outage-causing-trouble
https://www.theverge.com/2017/2/28/14765042/amazon-s3-outage-causing-trouble

[50] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.

Oceanstore: An architecture for global-scale persistent storage. SIGPLAN

Not., 35(11):190–201, Nov. 2000.

[51] R. Kukreja. The 11 Worst Cloud Outages (Fiascos) of 2016. https://

www.stacktunnel.com/worst-cloud-outages-fiascos-2016.html, 2016.

[52] J. Kurihara, S. Kiyomoto, K. Fukushima, and T. Tanaka. A new (k, n)-

threshold secret sharing scheme and its extension. In International Conference

on Information Security (ISC ’08), 2008.

[53] A. Langley, W.-T. Chang, N. Mavrogiannopoulos, J. Strombergson, and

S. Josefsson. ChaCha20-Poly1305 cipher suites for transport layer security

(TLS). RFC 7905, June 2016.

[54] A. W. Leung and E. L. Miller. Scalable security for large, high performance

storage systems. In ACM Workshop on Storage Security and Survivability

(StorageSS ’06), 2006.

[55] J. Li, X. Chen, M. Li, J. Li, P. P. Lee, and W. Lou. Secure deduplication

with efficient and reliable convergent key management. IEEE Transactions

on Parallel and Distributed Systems, 25(6):1615–1625, June 2014.

[56] M. Li and P. P. Lee. Stair codes: A general family of erasure codes for

tolerating device and sector failures in practical storage systems. In USENIX

Conference on File and Storage Technologies (FAST ’14), 2014.

[57] M. Li, C. Qin, and P. P. C. Lee. Cdstore: Toward reliable, secure, and

cost-efficient cloud storage via convergent dispersal. In USENIX Annual

Technical Conference (ATC ’15), 2015.

[58] M. Li, C. Qin, P. P. C. Lee, and J. Li. Convergent dispersal: Toward storage-

efficient security in a cloud-of-clouds. In USENIX Workshop on Hot Topics

in Storage and File Systems (HotStorage ’14), Jun. 2014.

[59] Y. Li, N. S. Dhotre, Y. Ohara, T. M. Kroeger, E. Miller, and D. D. E. Long.

Horus: Fine-grained encryption-based security for large-scale storage. In

USENIX Conference on File and Storage Technologies (FAST ’13), 2013.

[60] C. Lv, X. Jia, L. Tian, J. Jing, and M. Sun. Efficient ideal threshold secret

sharing schemes based on exclusive-or operations. In International Conference

on Network and System Security (NSS ’10), Sept 2010.

[61] R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon

codes. Commun. ACM, 24(9):583–584, Sept. 1981.

49©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://www.stacktunnel.com/worst-cloud-outages-fiascos-2016.html
https://www.stacktunnel.com/worst-cloud-outages-fiascos-2016.html

[62] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed. Strong security

for network-attached storage. In USENIX Conference on File and Storage

Technologies (FAST ’02), 2002.

[63] M. Nanavati, P. Colp, B. Aiello, and A. Warfield. Cloud security: A gathering

storm. Commun. ACM, 57(5):70–79, May 2014.

[64] Z. Niu, K. Zhou, D. Feng, H. Jiang, F. Wang, H. Chai, W. Xiao, and C. Li.

Implementing and evaluating security controls for an object-based storage

system. In IEEE Conference on Mass Storage Systems and Technologies

(MSST ’07), Sept 2007.

[65] J. Opara-Martins, R. Sahandi, and F. Tian. Critical analysis of vendor lock-in

and its impact on cloud computing migration: a business perspective. Journal

of Cloud Computing, 5(1):4, 2016.

[66] D. O’Sullivan. Cloud Leak: How A Verizon Partner Exposed Millions of

Customer Accounts. https://www.upguard.com/breaches/verizon-cloud-

leak, 2017.

[67] D. O’Sullivan. The RNC Files: Inside the Largest US Voter Data Leak.

https://www.upguard.com/breaches/the-rnc-files, 2017.

[68] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,

D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,

and S. Yang. The RAMCloud storage system. ACM Trans. Comput. Syst.,

33(3):7:1–7:55, Aug. 2015.

[69] D. Pal, P. Khethavath, J. P. Thomas, and T. Chen. Multilevel threshold

secret sharing in distributed cloud. In International Symposium on Security

in Computing and Communications (SSCC). 2015.

[70] S. Pawar, S. E. Rouayheb, and K. Ramchandran. Securing dynamic dis-

tributed storage systems against eavesdropping and adversarial attacks. IEEE

Transactions on Information Theory, 57(10):6734–6753, Oct 2011.

[71] N. Perlroth. Yahoo says hackers stole data on 500 million users in 2014. https:

//www.nytimes.com/2016/09/23/technology/yahoo-hackers.html, Sept.

2016.

[72] J. S. Plank and M. Blaum. Sector-disk (SD) erasure codes for mixed failure

modes in RAID systems. Trans. Storage, 10(1):4:1–4:17, Jan. 2014.

[73] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois field

arithmetic using Intel SIMD instructions. In USENIX Conference on File

and Storage Technologies (FAST ’13), 2013.

50©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://www.upguard.com/breaches/verizon-cloud-leak
https://www.upguard.com/breaches/verizon-cloud-leak
https://www.upguard.com/breaches/the-rnc-files
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html
https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html

[74] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A library in c/c++

facilitating erasure coding for storage applications-version 1.2. 2008.

[75] K. Rashmi, N. B. Shah, K. Ramchandran, and P. V. Kumar. Regenerating

codes for errors and erasures in distributed storage. In IEEE International

Symposium on Information Theory (ISIT ’12), July 2012.

[76] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath. Optimal

locally repairable and secure codes for distributed storage systems. IEEE

Transactions on Information Theory, 60(1):212–236, Jan 2014.

[77] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal

of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[78] J. K. Resch and J. S. Plank. AONT-RS: blending security and performance

in dispersed storage systems. In USENIX Conference on File and Stroage

Technologies (FAST ’11), 2011.

[79] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, B. Y. Zhao, and

J. Kubiatowicz. Pond: the OceanStore prototype. In USENIX Conference

on File and Storage Technologies (FAST ’03), 2003.

[80] B. Sasidharan, P. V. Kumar, N. B. Shah, K. Rashmi, and K. Ramachandran.

Optimality of the product-matrix construction for secure MSR regenerating

codes. In International Symposium on Communications, Control and Signal

Processing (ISCCSP ’14), 2014.

[81] M. T. Serrafero. Qualcomm snapdragon 845 benchmarks. https:

//www.xda-developers.com/qualcomm-snapdragon-845-hands-on-

benchmarks-first-impressions/, Feb. 2018.

[82] N. B. Shah, K. Rashmi, and P. V. Kumar. Information-theoretically secure re-

generating codes for distributed storage. In IEEE Global Telecommunications

Conference (GLOBECOM ’11), Dec 2011.

[83] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, Nov.

1979.

[84] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed

File System. In IEEE Symposium on Mass Storage Systems and Technologies

(MSST ’10), May 2010.

[85] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. iDedup: Latency-

aware, inline data deduplication for primary storage. In USENIX Conference

on File and Storage Technologies (FAST ’12), 2012.

51©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://www.xda-developers.com/qualcomm-snapdragon-845-hands-on-benchmarks-first-impressions/
https://www.xda-developers.com/qualcomm-snapdragon-845-hands-on-benchmarks-first-impressions/
https://www.xda-developers.com/qualcomm-snapdragon-845-hands-on-benchmarks-first-impressions/

[86] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller. Secure data

deduplication. In ACM International Workshop on Storage Security and

Survivability (StorageSS ’08), 2008.

[87] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti. POTSHARDS

- a secure, recoverable, long-term archival storage system. ACM Transactions

on Storage, 5(2):1–35, 2009.

[88] S. Takahashi and K. Iwamura. Secret sharing scheme suitable for cloud

computing. In IEEE International Conference on Advanced Information

Networking and Applications (AINA ’13), March 2013.

[89] R. Tandon, S. Amuru, T. C. Clancy, and R. M. Buehrer. Toward optimal

secure distributed storage systems with exact repair. IEEE Transactions on

Information Theory, 62(6):3477–3492, 2016.

[90] S. Vigna. Further scramblings of marsaglia’s xorshift generators. Journal of

Computational and Applied Mathematics, 315:175 – 181, 2017.

[91] Y. Wang. Privacy-preserving data storage in cloud using array bp-xor codes.

IEEE Transactions on Cloud Computing, 3(4):425–435, Oct 2015.

[92] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph:

A scalable, high-performance distributed file system. In USENIX Symposium

on Operating Systems Design and Implementation (OSDI ’06), 2006.

[93] A. D. Wyner. The wire-tap channel. The Bell System Technical Journal,

54(8):1355–1387, Oct 1975.

[94] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner. Low-density MDS codes

and factors of complete graphs. IEEE Transactions on Information Theory,

45(6):1817–1826, 1999.

[95] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the Data

Domain deduplication file system. In USENIX Conference on File and Storage

Technologies (FAST ’08), 2008.

52©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

אחרות: מבעיות סובלות הן אך הצפנה, במפתחות משתמשות לא שהן הוא סוד חלוקת סכימות של היתרון

לצורך אקראיים נתונים של גדולות כמויות וייצור חישובית, כבדים ופענוח קידוד הנתונים, באחסון תקורה

של לקידוד או קרים נתונים של טווח ארוכי ארכיונים על להגנה משמשות אלו סכימות כיום לכן הקידוד.

הצפנה. מפתחות כמו נתונים, של קטנות כמויות

של מפורש אחסון במקום אך הצפנה, מבוססת זאת שיטה סוד. לחלוקת כחלופה הוצעה AONT-RS

עצמאיים. אחסון שרתי בין ומפוזרים המוצפנים הנתונים עם יחד מעורבלים המפתחות ההצפנה, מפתחות

מסכימות יותר נמוכה אחסון ותקורת יותר טובים ביצועים להשיג AONT-RSל־ מאפשרת זו שיטה

הנתונים. את לפענח יכול החלקים כל את שמשיג מי רק זאת בשיטה גם סוד. חלוקת

הפיתוח נתונים. על הגנת של עיקריים בקבוק צווארי לחסל מבטיחים חדשים פיתוחים שני לאחרונה

של החישובית התקורה את ממזערת אשר ,secure RAID חדשה סוד חלוקת סכימת הוא הראשון

האצת הוא נוסף פיתוח אקראיות. קריאות עבור חלקי מידע של פענוח ומאפשרת סוד, חלוקת סכימות

פופולריות. קריפטוגרפיות בספריות זאת שיטה של ואימוץ ייעודיות, מעבד פקודות ידי על בחומרה הצפנה

שלנו התרומה

סודיות מספקת הצפנה חדש. תמורות שקלול מערכת מהנדסי בפני מציבה הטכנולוגית ההתקדמות

יעיל. מימוש לצורכי בחומרה מאיצים על ומסתמכת הצפנה, מפתחות של וניהול יצירה דורשת אך חישובית,

משמעותית תקורה גוררות אך יעיל, ופענוח קידוד עם מושלמת סודיות מבטיחות סוד חלוקת סכימות

מבחינת עדיפה גישה איזו תשובה נותנים לא הקודמים המחקרים תוצאות המזל, לרוע נתונים. באחסון

אלו. בשיטות האחרונים הפיתוחים לפני נעשו והם מאחר מערכת, ביצועי

עבור ביותר המתקדמות השיטות של השוואה ידי על הזה הפער על לגשר היא שלנו המחקר מטרת

מחדש ומעריכים והצפנה סוד חלוקת סכימות של הראשון המקיף הניתוח את מציגים אנו הגישות. שתי

בנתיב השלבים לכל מתייחסת שלנו ההערכה ומאובטח. מרוחק אחסון במערכות התמורות שקלול את

הכוללת והתפוקה וההצפנה, הקידוד של חישובית יעילות אקראיים, נתונים יצירת כולל הנתונים, אחסון

מרוחקת. ובסביבה מקומית בסביבה המבוזרת האחסון מערכת של

שלהן הביצועים את ומדדנו הצפנה, מבוססות סכימות ושתי סוד חלוקת סכימות שתי מימשנו זו בעבודה

אחסון התקני של והשפעה ואבטחה זמינות רמות של השפעה כולל במערכת, פרמטרים של רחב במגוון

רשת. וארכיטקטורות

לכן לשילוב, מדי איטית אקראיים נתונים יצירת (1) כדלקמן: הן מהמחקר שלנו העיקריות המסקנות

לחלוטין פותרת Secure RAID סכימת (2) אמתיות. אחסון במערכות ליישום ניתנת לא מושלמת סודיות

(3) יותר. טובים ביצועים מראה בחומרה מואצת הצפנה רק סוד: חלוקת של הכבדה החישוב בעיית את

סכימות על עדיפות הצפנה מבוססות סכימות והרשת, האחסון התקני השפעות את בחשבון לוקחים כאשר

קריאות מאפשרות Secure RAID וסכימת הצפנה רק (4) יותר. נמוכה אחסון תקורת בגלל סוד, חלוקת

ביעילות. קטנות אקראיות

ii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

תקציר

קבצים שיתוף מאפשרים גם הם לנפילות. ועמידות זמינות גבוהים, ביצועים מספקים בענן אחסון שירותי

משמעותית בצורה להוזיל יכולה לענן נתונים וניהול אחסון העברת תחרותיים. במחירים זאת וכל וגמישות,

האחסון. מערכות של וזמינות בביצועים לפגוע בלי ארגוני, פנים נתונים אחסון מרכז של ההוצאות את

בעוד רגיש. מידע על בשמירה חיצוניים בשירותים בוטחים לא רבים פרטיים ואנשים עסקים זאת, עם

מלא באופן להבטיח יכולים לא הם הנתונים, עמידות את להבטיח יכולים באינטרנט אחסון ששירותי

מירב כי מראים לאחרונה שפורסמו דיווחים מושחת. או זדוני חברה עובד מפני סודיותו על שמירה

אבטחה מנגנוני מספקים ולא למשתמש, שייך שהמידע השימוש בתנאי מציינים לא ענן שירותי של הספקים

לאחרונה. תועדו מהענן מידע״ ״דליפת של מקרים מספר כן, על יתר המידע. על להגן כדי

נעילת היא מהן אחת אלו. שירותים של יותר רחב אימוץ מונעות בענן נתונים אחסון של נוספות מגבלות

להיות הופך שונות) עסקיות (מסיבות למשנהו אחד ענן ספק בין המעבר בה ,(vendor lock-in) ספק

נוספת מגבלה ליישומים. חדשים ממשקים פיתוח או נתונים של גדולות כמויות אחזור עלות בשל מדי יקר

בענן. אחסון ספקי כל חשופים אליהם ושיבושים נפילות מהווים

(multi-cloud) עננים מרובה במודל נתונים האלה; מהמגבלות חלק פותר ומתפתח חדש אחסון מודל

או לגשת למשתמשים מאפשרת היתירות עצמאיים. עננים יותר או בשניים יתירות בתוספת מאוחסנים

יותר למקם למשתמשים מאפשר זה מודל כן כמו זמין. אינו העננים אחד כאשר גם הנתונים את לשחזר

יותר. גבוהים ביצועים או יותר נמוך מחיר שמציעים ענן מספקי ופלט קלט פעולות ולבצע נתונים

נתונים סודיות

לקוח בצד הנתונים את להצפין היא סודיות להבטיח היחידה הדרך אחד, בענן מאוחסנים הנתונים כאשר

מחייב זה כן כמו המידע. את לפענח המשתמש על הנתונים של קריאה בכל כך לענן. העלתו לפני

מבוססת הצפנה הצפנה. מפתחות של גדולות כמויות במרוחק) או (מקומית ולנהל לייצר הלקוח את

ופעולת מאחר המוצפן. המידע את לגלות חישובית מוגבל מתוקף חישובית−מונעת סודיות מבטיחה מפתח
לענן. גלוי מידע מעלים עדיין רבים משתמשים חישובית, כבדות לפעולות נחשבות והפענוח ההצפנה

בעזרת המידה סודיות על להגן אפשר עננים, כמה על מפוזרים הנתונים כאשר עננים, מרובה במודל

המשתמש של המקורי המידע סוד חלוקת בסכימת .(secret-sharing schemes) סוד חלוקת סכימות

החלקים כל את שמשיג מי ורק לחלקים מחולק המקודד המידע יתיר, אקראי מידע בתוספת מקודד

צריכים המקודדים החלקים כן על המקורי. המידע את לפענח יכול חלקים) של מראש קבוע מספר (או

מבטיחה סוד חלוקת עננים. מרובה במודל שנעשה כפי תלויה, בלתי אבטחה עם במקומות להישמר

לגלות יכול לא חישובית מוגבל בלתי תוקף information-theoretic)−גם security) מושלמת סודיות

חישובית. סודיות פני על עדיפה מושלמת סודיות לכן המקורי. המידע את

i©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

למדעי בפקולטה שוסטר, אסף ופרופסור יעקובי איתן פרופסור ידגר, גלה דר. של בהנחייתם בוצע המחקר

המחשב.

תודות

זה. ובמחקר בי שהושקע הרב הזמן ועל תמיכתם על ידגר, לגלה ובמיוחד שלי, למנחים להודות רוצה אני

אני בנוסף מהם. וללמוד איתם לעבוד ולזכות לעונג לי היה שלהם. העצום המחקרי מניסיון הרבה למדתי

בחיי. זו מאתגרת בתקופה תמיכתם על ולהורי לאשתי להודות רוצה

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

במערכות וזמינות סודיות של יעיל שילוב
מבוזרות אחסון

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

שור רומן

לישראל טכנולוגי מכון ־־־ הטכניון לסנט הוגש

2018 מרץ חיפה ה׳תשע״ח אדר

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

במערכות וזמינות סודיות של יעיל שילוב
מבוזרות אחסון

שור רומן

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	1.1 Cloud Storage
	1.2 Data Confidentiality
	1.3 Our Contribution

	2 Data Protection Schemes
	2.1 Data Availability
	2.2 Data Confidentiality
	2.2.1 Encryption
	2.2.2 Secret Sharing
	2.2.3 AONT-RS
	2.2.4 Secure RAID

	2.3 Random Data Generation
	2.4 Challenges and Goals

	3 Computational overheads
	3.1 Evaluation Goals
	3.2 Methodology
	3.2.1 Cryptographic Functions
	3.2.2 Random Number Generators
	3.2.3 Implementation of Data Protection Schemes
	3.2.4 Experimental Setup

	3.3 Results
	3.3.1 Cryptographic Function Overhead
	3.3.2 Random Number Generation
	3.3.3 Encode/Decode Performance

	4 End-to-End Evaluation
	4.1 Evaluation Goals
	4.2 Methodology
	4.2.1 Object Store Implementation
	4.2.2 Evaluation Setup

	4.3 Results
	4.3.1 Write/Read Throughput
	4.3.2 Random Access Latency
	4.3.3 Storage and Server Type
	4.3.4 Conclusions

	5 Discussion
	5.1 Full Node Repair
	5.2 Deduplication
	5.3 Pricing
	5.4 Storage Types
	5.5 Device Types and Network Overhead

	6 Related work
	7 Conclusions
	Bibliography
	Hebrew Abstract

