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Abstract

When sensitive data is stored in the cloud, the only way to ensure its secrecy is by
encrypting it before it is uploaded. Recently introduced hardware acceleration methods
promise to eliminate the computational complexity of encryption, but leave clients with
the challenge of securely managing encryption keys. At the same time, the emerging
multi-cloud model, in which data is stored redundantly in two or more independent
clouds, provides an opportunity to protect sensitive data with secret-sharing schemes.
Secure RAID, a recently proposed scheme, minimizes the computational overheads of
secret sharing, but requires non-negligible storage overhead and random data generation.
These recent advances introduce new opportunities to reduce data protection costs
considerably. However, previous studies were performed before they were introduced,
and thus do not indicate which approach will provide the best application-perceived
performance.

To bridge this gap, we present the first end-to-end comparison of state-of-the-art
encryption-based and secret sharing data protection approaches. In this study we
implement two secret-sharing schemes and two encryption-based schemes, and measure
their performance in a wide range of system parameters. We address all stages of the
data path, including random data generation, encoding and encryption overheads, and
overall throughput. Our evaluation on a local cluster and on a multi-cloud prototype
identifies the tipping point at which the bottleneck of data protection shifts from the
computational overhead of encoding and random data generation to storage and network
bandwidth and global availability.
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Abbreviations and Notations

S

Random rate

Cloud storage

Multi-cloud

MDS

Systematic
HDD

SSD

AES
ChaCha
AONT

RS

GF

SIMD

RNG
PRNG
CSPRNG

Code length

Data blocks

Redundancy blocks

Confidentiality level, the maximum number of eavesdropping
nodes that cannot gain any information on the secret
Number of servers in distributed object store

7, the ratio between the amount of random and data bytes
in a secret-sharing stripe

Storage model in which data is stored in logical pools acces-
sible via the Internet, while physical storage spans multiple
servers in remote data center

Storage model where data is stored redundantly in two or
more independent clouds

Maximum distance seperable, a MDS code with r parity
blocks can recover from r node failure

Code where k data blocks are kept without change

Hard disk drive, a magnetic storage device

Solid-state drive, a flash based storage device

Advanced encryption standard, symmetric block cipher
Symmetric stream cipher

All or nothing transform

Reed-Solomon erasure code

Galois finite field

Single instruction multiple data, processor instructions for
vectorization acceleration

Random number generator

Pseudo random number generator

Cryptographically secure pseudo random number generator
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Chapter 1

Introduction

1.1 Cloud Storage

Cloud storage services are ubiquitous, offering high performance and availability, global-
scale fault tolerance, file sharing, elasticity, and competitive pricing schemes. Out-
sourcing data storage and management to a cloud storage provider can be significantly
less costly to an organization than maintaining a private data-center with equivalent

availability and performance.

However, many businesses and individuals are reluctant to trust an external service
provider with their sensitive data; while providers guarantee the durability of the data,
they cannot fully guarantee confidentiality in the face of a malicious or compromised
employee. Recent reports [5, 63] suggest that the majority of cloud service providers
do not specify in their terms of service that data is owned by the customers, and lack
security mechanisms to protect it. Furthermore, several incidents of “data leakage” from
the cloud have been recently documented [30, 66, 67, 71].

Additional limitations hinder the wider adoption of cloud storage. One is vendor
lock-in, where switching from one cloud provider to another (for various business reasons)
becomes prohibitively expensive due to the cost of retrieving large amounts of data
or developing new application interfaces [65]. Another is outages that a single cloud

provider might suffer [44, 51].

An emerging and increasingly popular storage model addresses these limitations;
data in a multi-cloud [12, 14, 15, 22, 58] (also referred to as ‘inter-cloud’, ‘cloud-of-clouds’
or ‘federated cloud’) is stored redundantly in two or more independent clouds. Such
redundancy enables users to access or recover their data when one of the clouds is
temporarily unavailable, goes out of business, or experiences excessive load. Alternatively,
it offers the flexibility of placing more capacity or I/O load on the clouds that currently
offer it for the lowest price or highest throughput.



1.2 Data Confidentiality

When data is stored by one provider, the only way to ensure confidentiality is to encrypt
it at the client side, before it is uploaded to the cloud, and decrypt it whenever it is
downloaded. This requires generation and maintenance (either locally or remotely) of a
large number of encryption keys. Key-based encryption provides computational security—
it prevents attacks by requiring excessive complexity (and thus, computational power and
time). However, because encryption is considered computationally expensive [78, 87],
many users still upload their original data to the cloud without further protection [5].

The multi-cloud model presents an opportunity to protect data by secret sharing.
A secret-sharing scheme is a special encoding which combines the user’s original data
with redundant random data and ensures that the original data can only be decoded
by obtaining all of the encoded pieces. These pieces must be stored on independently
secured nodes, as is done in multi-clouds. Secret sharing provides information-theoretic
security—even an attacker with unlimited computational power has no way of gaining
any information about the data that was stored. Thus, information-theoretic security is
considered stronger than computational security.

Secret-sharing schemes do not require encryption-keys, but they incur significant
storage overhead, non-trivial encoding and decoding complexity, and require generating
large amounts of random data. Thus, they are currently used only for long-term
archiving of cold data [87], or for remotely storing small amounts of data, like encryption
keys [14, 15, 22].

An alternative to secret-sharing schemes was proposed in AONT-RS [78]. This
scheme is based on encryption, but instead of explicit encryption keys storage, the keys
are hashed with the encrypted data and dispersed on independent storage nodes. This
allows AONT-RS to achieve significantly higher throughput and lower storage overhead
than secret sharing.

Recent technological advances eliminate two major bottlenecks of data protection.
One is a new secret-sharing scheme, secure RAID, that facilitates efficient decoding
of partial data, and whose computational overhead is comparable to that of standard
erasure coding [39, 43]. Another is hardware-accelerated encryption [31] and its adoption

in common cryptographic libraries [6].

1.3 Our Contribution

Recent technological advances present system designers with a new trade-off. Encryption
provides computational security, but requires key generation and management and
relies on hardware accelerators for efficient implementation. Secret sharing provides
information theoretical security at low complexity but incurs significant storage overhead.
Unfortunately, existing evaluation results do not indicate which approach will provide

better application-perceived performance, because they are based on studies conducted



prior to these advances.

Our goal is to bridge this gap by directly comparing the state of the art of both
approaches. We reevaluate the inherent trade-offs of secure remote storage and present
the first comprehensive end-to-end analysis of secret-sharing and encryption-based
schemes. Our evaluation addresses all stages of the data path, including random data
generation, encoding and encryption overheads, and overall throughput on a local cluster
and on geo-distributed remote storage.

We implement two secret-sharing schemes and two encryption-based schemes, and
measure their performance in a wide range of system parameters, including levels of

availability and security, storage devices, and network architectures.

Our main conclusions can be summarized as follows.

1. The low throughput of true random data generation precludes information-

theoretical security in real system implementations.

2. Secure RAID completely eliminates the computational bottleneck of secret sharing,

and is outperformed only by hardware accelerated encryption.

3. Once storage and network bottlenecks are introduced, secret sharing is outper-
formed by encryption based techniques due to its additional I/O and transfer

overhead.

4. Only encryption and secure-RAID provide efficient access to small random data

chunks.
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Chapter 2

Data Protection Schemes

2.1 Data Availability

Fault tolerance in distributed storage systems is provided by replication or by erasure
coding. An (n,k,r) erasure code encodes k data chunks into a stripe of n chunks, such
that all the data can be reconstructed from any n — r chunks. The encoded chunks are
distributed across n different disks or nodes, ensuring that the data remains available
even if r arbitrary nodes are unavailable.

In a systematic erasure code, the original data is stored as is on k£ nodes and the
redundant (parity) information is stored on the remaining n — k nodes. Thus, such a
scheme allows direct access to data stored on a healthy node and requires less encoding
operations, than non-systematic codes.

Mazimum distance separable (MDS) codes can tolerate the highest number of
concurrent node failures given their storage overhead, i.e., r =n — k.

The most commonly used erasure code is Reed-Solomon [77], which is both systematic
and MDS. Its encoding and decoding entail matrix multiplication over a finite field.

Figure 2.1 depicts (n, k) Reed-Solomon encoding using an n X k systematic generator

matrix. This matrix is multiplied by the mq, ..., m; data vector to yield data + parity
k
/—/%
1{0|10]|O0 m, m
i 011|100 ™I g |
01010 x| — <
olofo]1 a
3
19| - P,
4192|922 b,
Pl
Figure 2.1: Systematic encoding of (n, k) Reed-Solomon erasure code. myq, ..., my are the data
elements, and p; ..., p, are parity elements.



vector. Traditionally, finite field operations are considered computationally expensive.
However, efficient implementations of Reed-Solomon are available [73] and used in
open-source systems such as Ceph [92] and HDF'S [84]. Recent studies show that its
encoding and decoding overheads are negligible compared to other overheads in the
system [36, 46, 56, 72]. New acceleration libraries, such as Intel’s ISA-L [21], utilize

specialized processor instructions to further increase encoding and decoding throughput.

Array codes such as EVENODD [18] and RDP [23] employ simple XOR operations
during encoding and decoding in order to avoid computationally expensive finite field
operations. These codes improve computational complexity (compared to scalar codes,
such as Reed-Solomon) by requiring only binary (XOR) operations, at the cost of
restricting the choice of encoding parameters and data layout. Another popular erasure
code is LRC (Local Reconstruction Code), which is used in Windows Azure [37]. This
code adds local parity blocks, so that one node can be recovered by accessing only
a small subset of the surviving blocks. Unlike Reed-Solomon, LRC is non-MDS, it
introduces a trade-off between storage efficiency and repair cost. We chose to focus
on Reed-Solomon erasure code in this study, as it is a widely used, with a variety of
efficient open source implementations and acceleration libraries, and can be constructed

for any n, k unlike array codes.

2.2 Data Confidentiality

Storage systems must address many aspects of data security, including data integrity,
user authentication and access control, and secure communication with clients. These
aspects can be successfully guaranteed by any single distributed-storage provider and
are orthogonal to our analysis. Mechanisms that address them guarantee that the data
stored by users cannot be modified without their consent. However, they do not prevent

unauthorized parties from accessing this data, fully or partially.

We note that while unauthorized data modification can be detected by the owner of
the data, unauthorized reads can go unnoticed. In this context, eavesdropping refers
to an unauthorized reader, who might also forward (leak) the data or parts of it to
an unauthorized third party. Confidentiality refers to preventing eavesdroppers from

inferring any information about the data. We are interested in the latter in this work.

For data distributed across n nodes, the confidentiality level is defined by z, the
maximum number of eavesdropping nodes that cannot gain access to any part of the
data, even if they collude. This formal definition inherently assumes that all nodes are
independently secured. In other words, when a node is attacked, causing it to behave
maliciously, this does not mean the remaining nodes are equally compromised. Thus,

the n nodes must be separately managed and owned, like in the multi-cloud model.

10



2.2.1 Encryption

In symmetric-key cryptography, the data is encrypted and decrypted using a small secret
encryption key. Many distributed storage systems are designed assuming that data
has been encrypted at the client prior to being distributed [12, 27, 33, 50, 79]. Thus,
generation and maintenance of encryption keys remains the responsibility of the clients.
While keys can be generated using a password, these tend to get lost, which results in
data loss. Securely storing encryption keys locally at the client prevents access to the
data from different end devices, while distributing the keys on several devices introduces
additional security issues [59, 69, 87].

Cryptographic encryption introduces significant computational overhead to the data
path. The advanced encryption standard (AES) [24] is a popular symmetric encryption
algorithm, which operates on fixed-length strings (blocks) of 128 bits. AES includes
implementations (ciphers) for key sizes ranging from 128 to 256. Larger encryption keys
provide better security, but also incur higher computational overhead. This limitation
has recently been addressed by the introduction of a specialized hardware accelerator

and a processor instruction set, AES-NI [31].

2.2.2 Secret Sharing

Secret sharing is an alternative method for ensuring data confidentiality without requiring
maintenance of encryption keys. In an (n,k,r, z) threshold secret-sharing scheme, a
secret of size k is split between n nodes, such that every subset of z nodes or less cannot
deduce any information about the secret, and the data can be recovered if at most r
nodes are unavailable [11, 52, 60, 83].

The most prevalent secret-sharing scheme is Shamir’s [83]. A secret m over a finite
field F' is shared between n nodes with threshold z as follows. z random elements are
chosen from F, (uy,...,u,), referred to as keys (not to be confused with encryption keys).
The secret and the keys define a polynomial p(z) = m + ujx + - - - + u,2z®. Evaluating
p(z) over n distinct non-zero points (x1, ..., 2, ), yields n shares, ¢; = p(x;). The secret
can be decoded from any z + 1 shares, from which the polynomial is reconstructed by
interpolation. The secret is p(0). The polynomial cannot be reconstructed by less than
z + 1 shares, so z shares or less do not reveal any information on the secret. Thus, in
this scheme, k =1 and r =n — (2 + 1).

The polynomial is typically evaluated via multiplication by a n x (z + 1) matrix,
as depicted in Figure 2.2 (a). Overall, encoding the secret requires O(zn) finite field
operations per byte. Decoding is typically done by interpolation, incurring O(2?) finite
field operations per byte. Encoding a secret of b bytes also requires zb bytes of random
data for the keys. We discuss the challenge of random data generation below.

A generalization of Shamir’s secret-sharing scheme, called ramp or packed Shamir [16],
allows 7 to be independently specified in addition to n and z. Thus, while at least z 4+ 1

nodes are required to cooperate in order to gain any information on the secret, n — r

11
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Figure 2.2: Encoding of Shamir’s secret-sharing scheme (a) and generalized Shamir’s secret-
sharing scheme (b). wuy,...,u, are the random key elements, mq,...,my are the data elements.
nodes are required in order to fully recover the secret.
Encoding is similar to Shamir’s but is applied to k secrets, (mq,...,my), over a

finite field F'. The k secrets and the z random keys, (u1,...,u;), define a polynomial of
degree z + k — 1. Evaluating p(z) over n distinct non-zero points (x1,...,z,), yields n
shares ¢; = p(z;). Decoding the secret requires z + k shares, with which the polynomial
is reconstructed by interpolation.

Like in Shamir’s original scheme, the polynomial is typically evaluated via multipli-
cation by a n x (z + k) matrix, as depicted in Figure 2.2 (b). Thus, encoding requires
O((z + k)n) finite field operations per k secret bytes. Decoding is done by interpolation
and incurs O((z + k)?) finite field operations per byte. Sharing a secret of b bytes
requires %b bytes of random data. This variation of Shamir’s scheme can be applied to
arbitrary k, r, and z with the minimal achievable storage overhead. However, its main
limitation is the need to download and decode n — r non-systematic shares upon every
data access.

The added value of confidentiality on top of standard fault tolerance entails significant
overhead. It has been shown that the maximal secret size, k, in an (n, k,r, z) threshold
secret-sharing scheme is n — r — z [42]. Thus, while the minimal storage overhead for

tolerating r failures with an erasure code is kzr (in MDS codes), the minimal overhead

k+r+z
— -

for also tolerating z eavesdropping nodes is

2.2.3 AONT-RS

All-or-Nothing Transform with Reed-Solomon (AONT-RS) [78] was proposed in the
context of independently-secure storage nodes, and is designed to avoid the high storage
and computational overheads of secret sharing schemes as well as encryption key main-
tenance. As depicted in Figure 2.3, it first encrypts the data with a standard symmetric
cipher like AES using a random encryption key. It then computes a cryptographic hash
of the encrypted data, XORs the hash value with the key, and appends the resulting

12
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Figure 2.3: Encoding process of AONT-RS, ¢i,...,c, are the encrypted data chunks and
Pp1,...,pr are the parity chunks.

string to the data, creating an AONT-RS package. The package is encoded with an
(n, k) Reed-Solomon code, and the resulting n chunks are each stored on a different
node.

Clients can decrypt any of the systematic chunks as long as they store the encryption
key. At the same time, owners who do not store the key locally can recover it by
computing the cryptographic hash of all k systematic chunks. This procedure is followed
even if the application requires less than k data chunks. An attacker can access the
data only by compromising k£ independent nodes or guessing the encryption key.

A known drawback of encryption is that it eliminates duplicates in the encrypted
data. As a result, storage reduction techniques such as deduplication do not work
on encrypted data. A variation of AONT-RS scheme, that allows deduplication, was
presented in CDStore [57]. In this version, instead of using a random encryption key,
the key is generated based on the object’s content. Thus, identical data has an identical
encryption key and the encrypted data is identical as well. This allows deduplication by
both clients and servers.

The evaluation of AONT-RS in the original paper shows that this scheme is superior
to secret sharing schemes. However AONT-RS was only compared to the basic Shamir’s
secret-sharing scheme, which is less efficient than the generalized version. Furthermore,
the paper was published before hardware accelerated encryption was available, and

before the introduction of efficient secret sharing schemes.

2.2.4 Secure RAID

A recently proposed secret-sharing scheme follows an alternative approach for addressing
the limitations of Shamir’s scheme: rather than relying on encryption, it minimizes the
number of finite field operations for encoding and decoding. An (n, k,r, z) secure-RAID
scheme stores k secrets, (m1,...,mg), over a field F. In the first step, z random keys,
(u1,...,u,), are generated and encoded with an (n — r, z) erasure code and stored
systematically on z nodes. In the second step, the k secrets, XORed with the keys and
the redundancy generated in the first step, are encoded with an (n,n — r) erasure code

and split between the remaining n — z nodes. The security of the scheme is ensured

13
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Figure 2.4: Encoding process of (n =9,k = 3,r =4, 2 = 2) secure RAID (a) using two Reed-
Solomon codes, and encoding process of (n, k,r, z) secure RAID (b) using generator n x (z + k)
matrix.

when the erasure code used in the first step is a subcode of the erasure code from the
second step. This ensures that the parity generated in the second step will not reveal
more information on the secrets than any other share, proof in the paper [39].

Figure 2.4 (1) shows the encoding in a (9,3,4,2) secure RAID scheme. The two keys,
(u1,u2), are encoded with a (5,2) Reed-Solomon code (RS;) which generates three
parities, (p{, p§,pY). These parities are XORed with the secret, (m1,m2, m3), and the
result is encoded with a carefully chosen (9,5) Reed-Solomon code (RS3) to produce
the n shares. Decoding is done by obtaining the keys, encoding them with R.S7, and
using the parities to reveal any m; or all of them. Thus, three shares are required
to decode one data share, and any five shares can reveal the entire secret. The data
can be recovered from up to four node failures. The encoding can also be done using
multiplication of a near-systematic n x (z + k) generator matrix by a vector of keys and
data elements, as depicted in Figure 2.4 (b).

Alternative constructions or secure RAID are based on array codes such as EVEN-
ODD. Table 2.1 summarizes known constructions and their constraints on k,r, and
z. We will use the construction based on Reed-Solomon code, which does not impose
any constraint on k, r, and z, and is easy to build using existing implementations of

Reed-Solomon code.

This scheme holds several desirable properties. First, its storage overhead is optimal
(k=mn—r — z) as in the generalization of Shamir’s scheme. Second, the two encoding
steps are comparable in complexity to standard erasure codes. Since the keys are stored
systematically and every element of the secret is protected by exactly z keys, the number
of finite field operations for encoding is O(zk + (z + k)r). We refer to this property as
near-systematic encoding. Finally, a random read of a single share of the secret requires
accessing only a single encoded share and z keys, and the original share can be decoded

with only O(z) finite field operations. This is in contrast to accessing and decoding
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Erasure code k z r n XOR | Comment
only

Variety of implementations. When
Reed-Solomon Any | Any | Any | k+r+2 | No r = z = 1 the scheme will work only
for even k.

p is prime, limitation of the code.
k can be extended to other values

EVENODD [19] | p—2 2 2 p+2 Yes by addition of virtual nodes, this
complicates encoding and decoding.
STAR [38] p—3 3 3 p+3 Yes p is prime, limitation of the code.
RDP [23] p—3 2 2 p+1 Yes p is prime, limitation of the code.
B-codes [94] 2 2 2 6 Yes Only one parameter set possible.

Table 2.1: Available constructions of secure RAID and their constraints on the scheme
parameters k,r and z.

n — r shares in existing secret-sharing schemes (note that typically, n — r is considerably

greater than z).

2.3 Random Data Generation

Key-based encryption and secret-sharing schemes are only as secure as their random
data. In true random data, the value of one bit does not disclose any information on
the value of any other bit. Thus, if the keys are not truly random, an attacker can
derive some information about the encoded data.

True random data is generated by measuring a natural source of noise, such as
atmospheric or thermal noise, or hardware interrupts [20, 25, 32, 34, 35]. This method
produces unpredictable streams of data, but is rate-limited by the external noise
source and may require special hardware. Thus, true random data generators are
typically orders or magnitude slower than the data protection schemes that rely on
them. In addition, most of them cannot be used safely on virtual machines that share
hardware [45].

An alternative approach uses a pseudo-random number generator (PRNG). A PRNG
is a deterministic algorithm that, given an initial value (seed), generates a sequence of
uniformly distributed numbers. A cryptographically secure PRNG (CSPRNG) generates
a random output that is computationally indistinguishable from true random data.
Thus, it is considered computationally secure to use CSPRNGs to generate encryption
and secret-sharing keys. CSPRNGs are typically implemented with a cryptographic

function, whose seed must be generated by a true random generator.

2.4 Challenges and Goals

The schemes described above have been designed with different objectives and trade-offs
between storage and computational overhead, maintenance, and level of security. At

the same time, their performance depends on recently introduced acceleration methods
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for encryption, random data generation, or finite field operations. Thus, previous
evaluation results do not provide a clear picture of how these schemes compare in terms
of application-perceived read and write throughput. For example, AONT-RS has been
shown to outperform Shamir’s secret-sharing scheme, in a study that preceded both
secure RAID and hardware-accelerated encryption. Similarly, the complexity of secure
RAID has been shown to be lower than that of Shamir’s scheme and encryption, but
this theoretical result does not reflect the effects of hardware acceleration on each of
these methods. Finally, while secret sharing schemes rely on large amounts of random
data to provide information-theoretical security, we are not aware of any evaluation
that includes true random data generation.

To further complicate matters, the benefit of recent schemes and hardware improve-
ments depends on their specific implementation and on the storage system they are
applied to. The choice and combination of a random number generator, erasure code,
and encryption algorithm can determine which one becomes the bottleneck. Similarly,
the system bottleneck may be determined by the speed of the processor, the character-
istics of the storage devices, the topology of the network, and the interaction between
those components. Multi-cloud environments may further increase the sensitivity of any
given scheme to unstable storage and network throughput.

Our goal in this study is to close this gap by mapping the end-to-end costs of the
state-of-the art in data protection schemes. To that end, we examine how application
read and write throughput are affected by (1) random data generation, (2) hardware
acceleration, (3) storage overhead (4) storage type, and (5) network topology. Our
results reveal a different clear winner in each context: in-memory computation, in-house
LAN, and multi-cloud.
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Chapter 3

Computational overheads

3.1 Evaluation Goals

We evaluate the following data protection schemes.

e Reed-Solomon, which provides only fault tolerance, is our baseline.

e Encryption, which encrypts the data with a key-based symmetric cypher and encodes
the result with Reed-Solomon for fault tolerance.

e AONT-RS, which hashes the encrypted data, combines the result with the encryption
key, and encodes the entire package with Reed-Solomon.

e Shamir’s secret-sharing scheme, which combines security and fault tolerance in
non-systematic encoding.

e Secure RAID, which combines security and fault tolerance in two encoding rounds
based on Reed-Solomon.

The goal of this section is to evaluate the computational overhead of the presented

schemes.

3.2 Methodology

We implemented all the data protection schemes in C++ for scheme performance evalu-
ation and in Java for the distributed objects store described in Chapter 4. Whenever
possible, we based our implementation on existing verified and optimized implemen-
tations of standard procedures. For Reed-Solomon and matrix multiplications over
finite fields, we used Jerasure library [74], which enhances finite field operations using
vectorization, i.e SIMD instructions. We used only finite field operations over G F(2%),
where each byte is an element in the field, this allows efficient implementation and

convenience of working in byte granularity.

3.2.1 Cryptographic Functions

We used the OpenSSL cryptographic library [6], for all ciphers and cryptographic hash

function implementations.
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Component Implementation  Provider Comments
Jdev /random Linux Environmental noise as random source, in-
True RNG cluding interrupts and RdRand
RdRand Intel Thermal noise as random source
/dev /urandom Lintx Based on ChaCha, seeded periodically by
CSPRNG the OS
AES OpenSSL (C++), SunJCE AES 256 counter mode
(Java)
rand() <cstdlib>
PRNG XOR xoroshiro128+ Not secure
MD5 128 bit hash
Hashing SHA-1 SOPGIEESL )(C_H—)’ 160 bit hash
SHA-256 ndava 256 bit hash
ChaCha OpenSSL (C++), Stream cipher, 128 bit keys, used in
Symmetric key Bouncy Castle (Java) TLS [26, 53]
encryption AES OpenSSL (C++), SunJCE Block cipher, hardware accelerated using
(Java) 128, 256 bit keys
Erasure coding | Reed-Solomon (RS) Jerasure (C++), .Optumz.ed using vectorization with SIMD
Backblaze (Java) instructions
. Our implementation
Data dispersal AONT-RS (C+/Java) AES-128 + SHA-1
Shamir’s Our implementation  Uses Jerasure for finite field operations in
Secret sharing (C++/Java). . G+
Secure RAID Our implementation Based on Reed-Solomon
(C++/Java)

Table 3.1: Implementation details of the data protection primitives and schemes used in our
evaluation.

Symmetric-key ciphers. We examined two different ciphers. ChaCha is a stream
cipher [13] used in various secure communication protocols, such TLS [53]. AES is a
popular symmetric-key block cipher [24], which is stronger than ChaCha, available in
various modes of operation. We used AES in counter (CTR) mode, in which the data is
XORed with a stream of values produced by encrypting successive values of a counter.
The security level of the cipher is determined by the size of the key, where 256 bits is the
strongest and 128 bits is minimal and thus, weaker. AES cipher also has performance
advantage as it can be accelerated in hardware via instruction set AES-NT [31] in x86
architecture. AES processor instructions is also available in other architectures, such as
ARM ([3], Oracles SPARC [10] and IBM’s POWERT7+ [17].

Cryptographic hash functions. We considered three cryptographic hash func-
tions. MD$5 generating a 128-bit hash value, SHA-1 generating a 160-bit hash value
and SHA-256 generating a 256-bit hash value. These hash functions are widely used

for message authentication codes [49].

3.2.2 Random Number Generators

We examined several pseudo-random number generators, both secure and non-secure.
We seeded all generators with values with true random data from /dev/random, although
the size of the seed differed for different generators. We used two CSPRNGs, based on
different cryptographic functions for secure random generation. Our AES CSPRNG
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implementation uses AES-256 in CTR mode, initialized with a 256-bit key and a random
counter. /dev/urandom is native CSPRNG in Linux, it is based on ChaCha in Linux
kernel 4.9. The generator is seeded periodically by the operating system. This is
considered a vulnerability—users cannot verify that the output does not depend on
previous output [32].

We also employed two true random number generators available on our evaluation
setup. First is Linux’s /dev/random, which is seeded constantly by the operating system.
RdRand is Intel’s digital random number generator, seeded using thermal noise in the
chip.

For evaluation purposes, we used two non-cryptographic PRNGs. We denote rand()
the basic PRNG supplied in <cstdlib> in C++. Xoroshiro128+ (XOR) is the fast
PRNG [90].

We also use a “fake” PRNG, None, which reads data from a predefined array in
memory. This served as our baseline for evaluating the effect of random data generation

on the throughput of the schemes that require it.

3.2.3 Implementation of Data Protection Schemes

For encryption, we used AES-256 and ChaCha. We generated keys from /dev/random,
and stored them locally for decryption. Secure key management is outside the scope of
this evaluation. After the data was encrypted parity chunks were constructed using RS
erasure code. For AONT-RS, we used AES-128 (for encryption) and SHA-1 (for the cryp-
tographic hash), as these were the fastest combination available. For the secret-sharing
schemes, we used the PRNGs specified above. We implemented Shamir’s scheme and its
generalization using finite field matrix multiplication in Jerasure. Our secure RAID im-

plementation is based on the Reed-Solomon implementation from Jerasure library as well.

Implementation details of the data protection primitives and schemes are summarized
in Table 3.1.

3.2.4 Experimental Setup

We performed our evaluations on an 8-core Intel Xeon E5-2630 v3 at 2.40 GHz with
128 GB RAM, running Linux kernel 4.9.0. We first encoded and then decoded 512
4-MB objects (2 GB in total) and measured the single-threaded throughput of each
data protection scheme. We used random objects generated before the start of the
experiment. In each experiment, we varied k (2,4,8,16,32), and r, z (1,2) whenever they
were applicable, to reflect a wide range of overheads.

We measured the throughput of each scheme in one encode and three decode use-
cases.
e Encode: n shares were generated from k data chunks. n varied depending on the

scheme, either n = k+r for encryption based schemes or n = k41 + z for secret-sharing.
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Ciphers Hash functions (digest)
ChaCha AES-128 AES-256 MD5 SHA-1 SHA-256

Encrypt  841.54 4537.93 3379.98
Decrypt  846.62 4569.03 3425.19

606.65 853.73 377.9

Table 3.2: Measured throughput (MB/s) of cryptographic functions. For ciphers, encryption
and decryption throughput; for hash functions, digest throughput. AES has significantly higher
throughput thanks to hardware acceleration.

True RNG Secure PRNG Non-secure PRNG
/dev/random RdRand  /dev/urandom AES Basic  XOR
1.15 54.82 214.07 3379.98  420.69 798.55

Table 3.3: Measured throughput (MB/s) of random data generation. True random data
generation is too slow for anything but seeding. AES secure PRNG is fastest thanks to hardware
acceleration.

e Stripe decode: the k£ data chunks were generated from k or k + z shares, depending
on the scheme.

e Degraded read: to emulate one or two lost shares, the k data chunks were generated
from the surviving data and parity shares.

¢ Random access: one random data chunk from each stripe was requested and decoded

by each scheme according to its properties.

3.3 Results

3.3.1 Cryptographic Function Overhead

For the ciphers in our schemes, we measured the encryption and decryption throughput,
and for the hash functions we measured the digest throughput. Our results, summarized
in Table 3.2, show that AES achieves a speedup of up to 5x compared to Chacha, thanks

to its hardware acceleration.

3.3.2 Random Number Generation

We measured the throughput of six RNGs detailed in Table 3.1. Our results, summarized
in Table 3.3, show that true random data generation is too slow for any practical purpose
on a general purpose machine. The AES CSPRNG is the most efficient method, even
more than the non-secure PRNGs, thanks to hardware accelerated cipher.

We measured the encoding throughput of Shamir’s scheme and secure RAID with
random data generated with the different methods to evaluate their overall effect on
performance. Figure 3.1 shows the results for k£ = 2,8,32 and r = z = 2. Our results
show that the random data generation bottleneck can be eliminated if we are willing
to replace information theoretical security with computational security, which can be
achieved by hardware accelerated CSPRNG.
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Figure 3.1: Effect of random data generation on secret-sharing schemes with different random
rates and r = z = 2. Using hardware accelerated secure PRNG minimizes the overhead.

To reason about these results, we define the random rate as 7, the ratio between
the amount of random and data bytes in a stripe. Both schemes had the same random
rate. Indeed, when k = 2 and the random rate was 1, both schemes required 4 MB
of random data per 4-MB stripe, and their performance was similar with RdRand,
which was the bottleneck. The effect of random data generation decreased with the
random rate as k increased. Even with a random rate of 0.0625, RdRand reduced secure
RAID encoding throughput by 3x. In the rest of our evaluation we used only AES
CSPRNG. Our evaluation of available random number generation techniques leads to
our first conclusion, that the low throughput of true random data generation precludes

information-theoretical security in real system implementations.

3.3.3 Encode/Decode Performance

We measured encode, decode and degraded decode throughput of all the schemes. We
draw three main conclusions from these results: (1) Secure RAID completely eliminates
the computational bottleneck of secret sharing. (2) Hardware accelerated encryption
removes computational overhead and outperforms the other schemes. (3) AONT-RS
performance is limited by the cryptographic hash function.

Figure 3.2 shows encode (a) decode (b) throughput of all schemes with r = z = 2
and different k values. Reed-Solomon was omitted from the decode experiment because
it does not require any decoding. For each encryption based scheme (AES, ChaCha,
AONT-RS), the throughput is the same for all k. Hardware accelerated AES performed
best among these schemes. AES scheme encoding throughput is lower (2160 MB/s), than
AES cipher encryption throughput (3380 MB/s in Table 3.2), as the scheme includes
Reed-Solomon encoding as well. AONT-RS had the lowest encoding and decoding
throughput, about 650 MB/s. This is due to the overhead of hash calculation, which is
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Figure 3.2: Encoding (a) and decoding (b) with = z = 2. The high overhead of encryption
is eliminated by hardware acceleration. AONT-RS suffers the overhead of non-accelerated
cryptographic hash function. Shamir’s high overhead prevents its throughput from increasing
with k, despite the decrease in random rate. In decoding secure RAID outperforms all the
schemes, thanks to its near-systematic encoding.

prohibitive because of its low throughput.

Interestingly, Shamir’s encoding and decoding throughput did not increase with k,
despite the decreasing random rate. The reason is its non-systematic encoding—the
number of operations for encoding grew quadratically with k, and became the bottleneck
for k > 4. Thanks to the near-systematic encoding in secure RAID, its encoding
throughput increased with k, as its random rate decreased. Its encoding throughput
with £ = 8 was 1890 MB/s, 55% higher than with £ = 2, and only 12% lower than
hardware accelerated AES. Secure RAID decode throughput is fastest at about 4200
MB/s.

Sensitivity to r and z

We repeated encode and decode measurements with different r and z combinations. The
results showed similar trends to encoding and decoding with z = r = 2, while efficient
schemes were more sensitive to changes in r and z.

Reducing r from 2 to 1 increased the encoding throughput of all schemes with all &k
values. The increase was higher for the efficient schemes in which parity generation was
responsible for more of the overall overhead.

Figure 3.3 (a) shows encode throughput of all schemes with with » =1 and z = 2.
Encoding throughput increased by over 100% for Reed-Solomon and about 30% for
AES and secure RAID, and by 6% for ChaCha and for AONT-RS. In Shamir’s scheme,
the relative weight of one parity generation decreased with increase in k, due to its non-

systematic encoding of the remaining n — 1 shares. Its encoding throughput increased
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Figure 3.3: Encoding with r =1, 2 = 2 (a) and with » = 1, z = 2 (b); and decoding with
z =1 (c). Changing r does not influence systematic decoding, and changing z is only applicable
for secret-sharing schemes.

by to 22% with k = 2 and only by 4% with k = 32.

Reducing z from 2 to 1 reduced the random rate and increased encoding and decoding
throughput of both secret-sharing schemes. Here, too, the increase was higher in secure
RAID which is the more efficient scheme.

Figure 3.3 shows encode (b) and decode (c) throughput of all schemes with » = 2 and
z = 1. Secure RAID encoding and decoding throughput increased by about 45% and
70% respectively. In Shamir’s scheme encoding and decoding complexity depends on k,
thus the influence of reducing z decreased with increase in k. Its encoding throughput
increased by 9% (k = 32) to 70% (k = 2), and decoding throughput increased by 6%
(k = 32) to 85% (k = 2).

Degraded Decode Performance

Figure 3.2 (c) shows the decode throughput of each scheme when two systematic shares
are unavailable, and r = z = 2. Reed-Solomon reconstruction stands as baseline to
other schemes, as almost all of them include Reed-Solomon reconstruction as part of
degraded decode process.

For encryption based schemes, additional reconstruction overhead affected only AES,
whose slowdown was about 36%. Decryption remained the bottleneck of ChaCha and
AONT-RS, whose throughput was not affected by the recovery operations. Shamir’s
scheme was also unaffected, but for a different reason. Due to its non-systematic
encoding, every decode had to “recover” k data shares from n — r shares, and the choice
of shares did not the affect decoding method. The throughput of degraded decode with
secure RAID was roughly half that of regular decode. The throughput increased slightly

23



ORS [ ChaCha F Shamir
[0 AES ll AONT-RS H S-RAID

7000

6000 +— —

5000 1

4000 1

3000

Decode throughput (MB/s)

8
8
|
|
T
I
I

1000 1

: Ll e

2 4 8 16 32

Figure 3.4: Degraded decode throughput with » = z = 2 and two unavailable systematic shares.
Data recovery affects only schemes with efficient decoding.

with an increase in k, as the relative portion of reconstructed shares decreased.

Random Access Decode Performance

Figure 3.5 shows the average decoding latency of a single share in a 4 MB object for
each scheme. The latency was averaged over decoding of a random chunk from each
of the 512 objects. The difference between the data protection approaches is clearly
evident, and demonstrates the major limitation of AONT-RS and the major advantage
of secure RAID.

The encryption-based schemes had to decode only the requested share, and thus
their latency decreased as k increased and the share size decreased. Their measured
throughput (not shown) was comparable to that of decoding a full stripe. AONT-RS,
on the other hand, had to hash all k£ shares to obtain the encryption key. This overhead
was the bottleneck, preventing the latency from decreasing with share size.

Shamir’s scheme had to process almost the entire stripe, k + z shares, to decode a
single share, still as size of the share decreased the scheme had less data to decode, and
thus the decode latency decreased as well. Secure RAID, on the other hand, required
only z+1 shares to decode a single share, and it achieved fastest random access decoding,
16-30% faster than AES.

Conclusions

The results of our measurements of encode and decode performance lead to our second
main conclusion, that secure RAID completely eliminates the computational bottleneck
of secret sharing. Secure RAID is the fastest scheme for decoding, and its encoding

throughput is exceeded only by hardware accelerated encryption.
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Figure 3.5: Random access average decode latency with » = z = 2. Random access performance
is a major drawback of AONT-RS.
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Chapter 4

End-to-End Evaluation

4.1 Evaluation Goals

In the previous chapter, we identified the bottlenecks of the different data protection
schemes with respect to their computational overheads. Here, we wish to understand
the effect of the various system-level parameters on these bottlenecks, and whether new
bottlenecks are introduced. We conducted our evaluation in two different environments.
The LAN setup consisted of five servers connected by a high speed network. The
multi-cloud setup consisted of up to 37 virtual servers on Amazon Elastic Compute

Cloud (EC2) [1], deployed in multiple geographical regions and different storage types.

4.2 Methodology

4.2.1 Object Store Implementation

We implemented a distributed object store prototype, which consists of a client that
connects to a specified number of servers for transmitting and receiving data shares.
We chose Java for our implementation because it provides full and efficient thread
management and communication services. As a result, we re-implemented all our data
protection schemes in Java. (see details in Table 3.1).

For consistency, we compared the single threaded encoding and decoding throughput
of the data schemes in Java and in C++. Table 4.1 shows the results for k =8, r = z = 2,
with the slowdown of the Java implementation compared to that in C++. Although
the JNI modules employ optimizations such as vectorization, the achieved increase in

throughout is masked by the overhead of data movement between Java and the native

RS AES ChaCha  AONT-RS  Shamir S-RAID
Enc 31248 (x19) 159.09 (x14) 89.55 (x8)  70.4 (x9)  37.08 (x20) 128.61 (x14)
Dec 664.5 (x5)  121.29 (x7) 111.75 (x6) 65.44 (x15) 297.89 (x14)

Table 4.1: Measured throughput (MB/s) of main data protection schemes implemented in Java
for k = 8,7 = z = 2 and slowdown (in parentheses) compared to the C++ implementation.
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Figure 4.1: A high-level illustration of our object store, with write and read operations. In
the write, object is encoded creating n shares, which are sent to n consecutive servers. In read,
n — r shares are requested from the servers on which they reside and the object is decoded from

these shares.

modules. To ensure that encoding and decoding are not the bottleneck in our LAN and
multi-cloud setups, the client executes them using a pool of four threads. Our results
show that this removes the computational bottleneck for all schemes except Shamir’s
secret sharing.

Communication was handled by a separate thread for each server and used a secure
protocol (TLS v1.2). At the servers, a separate thread managed 1/0, to allow I/O and
communication to proceed in parallel. Encoding and decoding were executed at the
client, which supports one write and four read operations, as follows.

e Write: an object of 4MB was encoded into a stripe of n shares with one of our data
protection schemes, and transmitted to n servers.

e Object read: n — r shares were requested from their servers and decoded.

e Degraded read: n — r shares were requested, assuming up to r servers were unavail-
able. The shares were decoded, possibly with a degraded decode operation.

e Random read: one random share was decoded from each object. The number of
servers contacted for this share depended on the data protection scheme.

e Greedy read: all n shares were requested from their servers, and decoding began as
soon as the first n — r shares were received, possibly as a degraded decode.

Figure 4.1 depicts the high-level representation of the object store and its main
operations to write and read objects as described earlier. The client is connected to
s servers, shares of each object are distributed to n different servers. For object read
the client requests the systematic shares from n — r servers, in case of encryption based
scheme n — r = k and in case of secret-sharing scheme n —r =k + z.

Algorithm 1 presents the pseudocode of the write operation executed by the client.
The main thread only reads the objects and submits them to the thread pool for
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Algorithm 1 Client operation on write object

1: function WRITEOBJECT(object, servers, codec,n, k, z)

2 obj _shares = codec.encodeObject(object) > executed via thread pool
3 obj _servers =getObjectServers(object.ID, servers,n) > pseudocode below
4: for all server, share € obj_servers, obj_shares do

5 server.pushShareToSendQ(share) > shares are sent asynchronously
6 end for

7: end function

encoding. After the shares are created by a thread in a thread pool, the shares are

pushed to the send queue of the appropriate server socket.

Algorithm 2 Client operation on object read

1: function READOBJIECT (object_I D, servers, codec,n, k, z)

2 obj _servers =getObjectServers(object_I D, servers, (n — 1))

3: for all server € obj_servers do

4 server.sendRequest(object_ID) > each server contains at most one share
5 end for

6: end function
7: upon event share received from server do

8: shares.append(share)

9: if len(shares) > (n —r) then

10: object = codec.decodeObject(shares) > executed via thread pool
11: end if

Algorithm 2 contains pseudocode of the basic read objects operation. First n —r
systematic shares of the objects are requested from the appropriate servers. Then in
an asynchronous event handler after the n — r shares received from servers, object is
submitted for decoding via thread pool. For degraded decode we select up to r servers
to be unavailable and request the n — r shares only from available servers. Random
share read is implemented slightly differently, as each scheme requires to read different
number of shares per for single share decode. The only difference is in the selection of
servers from which to read which is delegated to the codec object, and implemented for

each scheme separately.

Algorithm 3 Getting servers that store objects shares, computes first server and the
rest are subsequent servers, in an round-robin fashion.

1: function GETOBJECTSERVERS(object_I D, servers, shares_num)
2 servers_num =len(servers)

3 obj_servers = ()

4 for 0 < i < shares_num do

5: server = (i 4+ object_ID - n) mod servers_num

6 obj_servers.append(servers[server])

7 end for

8 return obj_servers

9: end function
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Algorithm 3 contains our method of selecting servers for storage of object shares.
We calculate the server that stores the first share and other shares are stored in a

subsequent servers in a round-robin fashion.

4.2.2 Evaluation Setup

We used the same number of servers, s, for each k. We chose s so that s > k 4+ 4, to
ensure the n shares were distributed to n different servers. For optimized load balancing,
we further ensured that ged(s,n) = 1. We distributed shares to servers in a round-robin
fashion, so that the first chunk of object ¢ was sent to server i-n(mod s), and subsequent
shares were sent to subsequent servers. For each parameter set and data protection
scheme, we wrote a series of 4MB random objects, and then read them with the four
read types. The throughput for each operation was measured in a separate experiment

and run on a new JVM with clean client and server caches!.

LAN Setup

Our local cluster used five machines identical to the one described in Section 3, connected
by a 10Gb Ethernet network and equipped with four Dell 960GB SATA SSDs. The
client ran on a dedicated machine, and each of the remaining machines was used
for up to ten virtual servers. Thus, in some of our configurations, some SSDs were
serving up to three virtual servers. We ran all combinations of r = {1,2}, z = {1, 2},
and (k,s) ={(2,7),(4,11),(8,13), (16,23), (32,37) }. For each parameter set and data

protection scheme, we wrote and read 512 objects, 2 GB in total.

Multi-Cloud Setup

We performed the same experiments in the multi-cloud setup, with 256 objects, r = z = 2
and (k,s) ={(2,7),(8,13),(16,23),(32,37)}. We ran each experiment four times and
present the average and standard deviation. We used the same client machine for our
multi-cloud setup. We used two instance types for our virtual servers on Amazon’s
EC2 [7]:

e c4.large had two virtual CPUs, 3.75 GiB of RAM and “moderate network band-
width”.

e c4.xlarge had four virtual CPUs, 7.5 GiB of RAM and “high network bandwidth”.

We configured our servers with three storage types:

e The General Purpose SSD is the default storage provided by Amazon Web Services
(AWS), with baseline throughput of 100 IOPS.

e The Provisioned IOPS SSD provided 50 IOPS per 1 GB. We created volumes of 50

"We do this by applying two simple commands: sudo echo 3 | sudo tee
/proc/sys/vm/drop_caches && sudo sync
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GB, with 2500 IOPS per volume.
e The Throughput Optimized HDD supported up to 500 MB/s for sequential workloads.

Our default setup consisted of c4.xlarge machines and general purpose SSDs. We
compared the different storage and machine types in a separate experiment, described
below.

AWS data centers are divided into regions, which correspond to distinct geographical
locations and are completely independent. Within a region, isolated data centers are
known as avatlability zones. We used separate zones to simulate independent cloud
providers. We deployed EC2 instances in 14 different regions and two or three availability
zones in each region: Ireland (3), Frankfurt (3), London (3), N. Virginia (3), Ohio (3), N.
California (3), Oregon (3), Canada Central (2), Sao Paolo (2), Mumbai (3), Singapore (2),
Seoul (2), Tokyo (2), and Sydney (2).

We note that our our client machine was located in Israel, which is connected to

Europe by optical fiber cables [8].

4.3 Results

The results of our end-to-end evaluation demonstrate how the additional storage overhead
of the secret-sharing schemes increases their storage and network bandwidth and limits
their performance. They also reinforce the limitation of AONT-RS and Shamir’s scheme

when it comes to small random accesses.

4.3.1 Write/Read Throughput
LAN Performance

Figure 4.2 shows write (a) and read (b) throughput of all schemes with » = z = 2 and
k ={2,8,16,32} in the LAN setup. The write and read throughput of Reed-Solomon,
AES, and secure RAID increased with k thanks to the reduction in storage overhead
and the increased I/O parallelism. Our cluster had 16 SSDs whose utilization increased
until the number of servers exceeded the number of devices. Thus, the throughput
was maximal with & = 16 and slightly lower with k& = 32, when the overhead of the
additional communication threads was considerable.

As the I/O read throughput was higher than write throughput, because less data
is read than written per stripe and reading speed in SSD is generally faster, ChaCha
and AONT-RS schemes reached their maximal read throughput with k£ = 4. It did not
increase further with k because of their computational overhead.

The read and the write throughput of Shamir’s scheme did not increase beyond
k = 4 due to its computational overhead, which was the bottleneck.

In secure RAID, the high storage overhead limited its throughput with k£ < 4. With
k = 16, the throughput of secure RAID was about 10% lower than that of AES. This

was roughly the difference between the storage overhead of those schemes. Encryption

31



(a) Write (b) Read

Throughput (MB/s)

200 JORS ~ EAONTRS 200 JORS  EAONTRS[ T
OAES [AShamir OAES [A Shamir M |
ChaCh S-RAID ChaCh S-RAID
600—- aCha B 600—- aCha B | -
500 2 500 ] B
e N H
=) H
400 = 400 -
= -
2, H
= -
_ 5N — £
300 2 300 1 =
=2 H
= g
200 200 =1
100 100 1 5
0 0 =
Q7 @1l (813 (1623) (3237) Q7 @1 8,13 (1623) (3237
k,s) (k,s)

Figure 4.2: Write (a) and read (b) throughput in the LAN setup with r = z = 2. 1/O
throughput becomes the bottleneck of all schemes except Shamir’s secret sharing. Computation
remains the bottleneck for ChaCha, AONT-RS, and Shamir’s scheme.

wrote n = 18 shares and read k = 16 per object, while secure RAID wrote n = 20 and
read k + z = 18 shares.

We repeated the write measurements with different » and z combinations. The
results showed similar trends to those in Figure 4.2. The effect of reducing both r and
z was similar to the effect this had on encoding throughput, yet for different reason.
Reducing r from 2 to 1 increased the throughput of all schemes due to the reduced
storage overhead. The increase was lower in Shamir’s scheme for k > 4 | where encoding
was the limiting factor. With k = 2, the reduction in r increased throughput of all of
the schemes by 30-33%. Reducing z from 2 to 1 had a similar effect on both secret

sharing schemes.

Multi-Cloud Performance

Figure 4.3 shows the write (a), read (b), and greedy read (c) performance in the multi-
cloud setting. The results are averaged over four executions, with error bars marking the
standard deviation. The smallest multi-cloud (s = 7) was deployed in European regions
only. We increased the size of the multi-cloud by deploying instances in additional
regions, in order of their observed throughput. As a result, the variability in the
throughput provided by different servers increased, increasing the standard deviation of
our results.

The write throughput increased with £ = 8 and k£ = 16, but then decreased with
k = 32. With k£ > 8 the difference between the schemes was no longer noticeable.
The read throughput decreased as the number of servers increased, due to the delays

induced by high-latency network connections. Our results for the largest multi-cloud
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Figure 4.3: Write (a), read (b) and greedy read (c) throughput in multi-cloud setup, on
c4.xlarge instances with general purpose SSD storage and r = z = 2. In multi-cloud en-
vironments, the network bandwidth dominates performance. The amount of redundancy (r)
determines the number of high-latency servers the system can tolerate.
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Figure 4.4: Random access latency in LAN setup with » = z = 2. AONT-RS and Shamir’s
scheme require k£ and k + z shares respectively for decoding a single chunk.

(s = 37) demonstrate a pathological case; this deployment included two servers each
in the Tokyo and Singapore regions, whose observed download throughput was 1.3
Mb/sec and 100Kb/s, respectively. This caused all schemes to achieve extremely low

throughput.

The greedy read optimization successfully increased the read throughput with s = 13
and s = 23, by eliminating the bottleneck of the two slowest servers in each experiment.
However, the setup with s = 37 included two more slow servers, and the redundancy

(r = 2) was not high enough to eliminate all of them.

4.3.2 Random Access Latency

Figure 4.4 shows the average latency of all schemes when reading one share from a
stripe, with r = z = 2 in the LAN setup. These results reinforce the limitation of

AONT-RS and Shamir’s scheme with respect to small random accesses.

The latency of Reed-Solomon, AES, ChaCha and secure RAID decreased with k,
as the size of the requested share decreased. Secure RAID reads z + 1 = 3 shares,
because it requires two key shares to decode the data share, while the other schemes
read only one. AONT-RS must read and hash the entire object, and thus its latency
was higher but decreased slightly with an increase in k, thanks to higher I/O parallelism.
Shamir’s scheme also reads the entire object. Thus, its latency also decreased as k
increased. However, for & > 8 its latency increased with k& due to the increased decoding

complexity.
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Network is the bottleneck in regular reads, but HDDs improve the throughput of write and
greedy read operations.
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4.3.3 Storage and Server Type

We repeated the experiment in the small multi-cloud (s = 7) with all combinations of
machine and storage types. The results for the Provisioned IOPS SSD were identical to
those of the General Purpose SSD, and thus we omit them from our discussion.

Figure 4.5 shows the write, read, and greedy read performance with instances de-
ployed on machines with moderate (c4.large) and fast (c4.xlarge) network connection,
with SSD and HDD storage.

The long-distance network bandwidth was the main bottleneck in this experiment,
and thus the machine types had little to no effect on the throughput of all operations in
all schemes. In contrast, the storage type did affect the throughput of the write and
greedy read operations. These operations are less sensitive to the network performance
than read, and thus the throughput of all schemes increased with the increase in storage
bandwidth provided by the Throughput Optimized HDD, compared to SSD.

4.3.4 Conclusions

Our end-to-end evaluation, combining both the LAN and multi-cloud setups, leads to
our final two conclusions. First, once storage and network bottlenecks are introduced,
secret sharing is outperformed by encryption based techniques due to its additional
I/O and transfer overhead. Finally, only encryption and secure RAID provide efficient

access to small random data chunks.
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Chapter 5

Discussion

Our evaluation focused on read and write throughput, which are major objectives in
storage-system design. However, additional factors affect the applicability and appeal

of the different data-protection approaches.

5.1 Full Node Repair

Recovery of a failed node entails transferring data from the surviving nodes to the
replacement node in charge of reconstructing the lost data. The replacement node
necessarily gains access to more than z shares, which creates a security risk. Several
solutions to this problem entail increased storage overhead [9, 70, 80, 82, 89] which, as
our results indicate, will likely reduce read and write throughput. In POTSHARDS [87],
a protocol for secure reconstruction is proposed, protecting the data in case z = 1, i.e. at
most one eavesdropper. The proposed protocol offers reconstruction using simple parity,
but can be modified to other types of parity. As part of the protocol, an additional
random mask is transferred with every share, doubling the repair network cost. This
protocol will not suffice if two or more nodes are compromised. Methods for minimizing
this cost and general reconstruction protocol for any z are studied in [40, 47, 75, 76].
Reconstruction does not compromise the security of encryption based schemes in which
the keys are managed in separate secure stores. This is done in Hybris [27], where the
keys are stored together with the meta-data in a private cloud, which provides added

security.

5.2 Deduplication

Storage service providers eliminate duplicate data from their systems in order to reduce
storage and network costs [28, 29, 85, 95]. Such duplicates cannot be identified when
data is encoded before it is uploaded. Convergent encryption, in which the encryption
key is generated by a cryptographic hash of the data, can successfully alleviate this

problem [57, 86]. A similar solution can be applied to secret-sharing schemes [55].
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However, our results indicate that this will significantly reduce encoding throughput,

unless both encryption and hashing are hardware accelerated.

5.3 Pricing

Cloud resource pricing depends on the location of the servers, the amount and type of
storage attached to them, and the I/O and network bandwidth they use. Therefore
additional storage overhead not only limits the performance of the schemes, but is also
more costly for the user. Furthermore, the additional cost of downloading entire stripes
during random access or z additional shares in each download may rule out some of the

schemes we evaluated.

5.4 Storage Types

Our evaluation provides some insight into the effect of several technological trends. As
storage-class memory and RAM-based storage [68] gain popularity, the bottlenecks in
the data path shift from storage to computation. In such architectures, the bottlenecks
we identified in Section 3 may no longer be masked by high storage and network costs.
This may increase the benefit from low computational overhead in schemes like secure
RAID, although the additional data transfer they incur may remain the bottleneck. At
the same time, hardware acceleration of common complex operations may be applied
to additional schemes. Intel’s ISA-L acceleration library provides an interface for
accelerated Reed-Solomon encoding and cryptographic hashing, which might also be
leveraged for random data generation. Such improvements may affect the bottlenecks

we identified in Section 3.

5.5 Device Types and Network Overhead

In our evaluation, we measured the computational overhead of the schemes and their
overall throughput on an enterprise-class server machine with high-end CPU and a
large memory. However, in the general case, data protection is performed on all types
of devices, from hand-held devices and small single-board computers running in home
appliance devices to special high-performance computing (HPC) machines processing
data at petabyte-per-second rates.

When data protection is running on mobile device, which have limited RAM and
processing power, the computational overhead may become critical. Furthermore, the
computational overhead will directly influence power consumption (or battery lifetime),
which is also a limited resource in such devices. Nevertheless, lately computational power
of mobile devices increased and new hardware acceleration techniques for cryptographic
functions [3] were introduced. Thus, the bottleneck is now the network bandwidth.

Currently the fastest available cellular network throughput is up to 2.6 Gbit/s [2] per
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cell (meaning it will be divided between all of the users in that cell’s area), while the
multi threaded encoding and decoding throughput of AES on new Qualcomm chipset is
approximately 5 GB/s [81].

On a laptop device the computational overhead is less critical—large amounts
of RAM and powerful CPUs with special instructions sets for hardware accelerated
cryptographic functions are already a standard. The fastest available wireless network
achieves a throughput of up to 1.3 Gbit/s per work station [4]. However, when the
data is uploaded and downloaded in a realistic WAN configuration, the throughput will
likely be much lower. For example, in a 100 Mbit/s Internet connection in Israel, we
measured a download speed of 60-35 Mbit/s and an upload speed of 5-2 Mbit/s. Thus,
for a client running on laptop in standard home environment the network will become
the bottlenecks.
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Chapter 6

Related work

To protect data in a distributed storage system, several aspects of security must be
combined. Data integrity refers to ensuring that the data is not modified by anyone
other than an authorized user. This is usually obtained by adding cryptographic hashes
as signatures to the data before it is stored [27, 33, 50]. A consensus mechanism
ensures that file writes, updates, and deletes are only performed by authorized users
on a threshold number of nodes. Authorized users are authenticated by a separate
interface, which also verifies user permissions using tokens, access control lists, or other
schemes [54, 62, 64]. Communication between the client and the provider’s servers, as
well as between servers of the same provider, is secured by the network protocols they
use [26, 93]. These mechanisms are orthogonal to the scheme used for securely storing
the data.

Designing a reliable storage system on a set of untrusted nodes is challenging in several
aspects. Early designs that targeted peer-to-peer networks, such as OceanStore [50],
Pond [79], and Glacier [33], addressed access control, serialized updates, load balancing,
routing, and fault tolerance. They all assume the data has been encrypted prior to
being distributed, while maintenance of encryption keys remains the responsibility of
the clients. The encrypted data is encoded with Reed-Solomon erasure codes in order
to ensure its durability in the face of large scale node failures.

Most multi-cloud architectures follow a similar approach. MetaStorage [12] addresses
the durability of the data by replication, and relies on Byzantine agreement protocol
for object updates. A slightly different approach is taken in Hybris [27]: metadata
containing signatures of the data is replicated in a private and secure cloud, while the
data is dispersed between multiple public clouds. This ensures strong consistency by
leveraging strong consistency of metadata stored off-clouds to mask the weak consistency
of data stored in clouds. DepSky [14] and SCFS [15] incorporate encryption into their
client, along with a secret-sharing scheme for securely storing the encryption keys. In all
these systems, erasure coding is performed on the encrypted data, as in our evaluation.

Several studies proposed that the storage overhead of secret-sharing schemes be

reduced by reducing the capacity of individual shares. One approach is to store only the
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seed of the randomly generated data, which requires regeneration of this data during
the decoding process [88]. Our evaluation of the multi-cloud settings indicate that the
reduction in storage overhead (and thus, download bandwidth) may justify the increased
computational overhead.

Considerable theoretical effort has focused on reducing the computation complexity of
Shamir’s secret-sharing scheme while still making it information-theoretically secure [39,
41, 61]. In [52, 60] new secret-sharing schemes are proposed improving the computational
complexity of basic Shamir’s scheme, by requiring only binary (XOR) operations for
encoding and decoding. BP-XOR [91] is another secret-sharing scheme constructed based
on popular LDPC codes, with decoding executed using belief propagation technique,
achieving only linear number of XOR operations for both encoding and decoding.
Another approach is taken in SSMS (Secret-Sharing Made Short) [48] the information-
theoretical security is sacrificed, achieving computational security instead. However, our
results show that the cost of true random data generation is too high, due to the limited
rate of measuring external noise, which also may require special hardware. Further,
when encoding is performed on virtual machine that shares hardware, true random
generation cannot be used safely [45]. Therefore, any implementation of Shamir’s and
other secret-sharing schemes in a real system will only provide computational security
whose strength depends on the strength of the CSPRNG.
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Chapter 7

Conclusions

We performed the first comprehensive comparison of encryption-based and secret-sharing
schemes. Our evaluation shows that information-theoretical security is infeasible in real
system implementations, due to the high cost of true random data generation. Thus,
both approaches provide computational security. In terms of encoding and decoding
performance, secret sharing with secure RAID is comparable to (and sometimes better
than) hardware accelerated encryption.

Our end-to-end evaluation demonstrates how the bottleneck in real implementations
shifts from computational complexity to storage throughput (on local storage) and
network bandwidth (in cloud deployments). In these settings, encryption outperforms
secret sharing thanks to its minimal storage overhead. Thus, our results suggest that
encrypting the data and dispersing the keys with an efficient secret sharing scheme is

optimal for multi-cloud environments.
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