
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס 
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או 
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או 

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.  



Clustering Based Data Migration
in Deduplicated Storage

Roei Kisous

 

 

 



 

 

 



Clustering Based Data Migration
in Deduplicated Storage

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Roei Kisous

Submitted to the Senate
of the Technion — Israel Institute of Technology

Tammuz 5782 Haifa July 2022

 

 

 



 

 

 



This research was carried out under the supervision of Dr. Gala Yadgar, in the Henry
and Marilyn Taub Faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s research
period, the most up-to-date versions of which being:

Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar. The what,
the from, and the to: The migration games in deduplicated systems. In 20th USENIX
Conference on File and Storage Technologies (FAST 22), 2022.
Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar. The what,
the from, and the to: The migration games in deduplicated systems. Invited and submitted
to the Special Section on FAST22 in the Transactions on Storage.

Acknowledgements

I would like to thank Dr. Gala Yadgar for putting in the time and effort that
exceeded my expectations. The ideas you contributed, the brainstorming process that
was used, the excellent guidance you provided, the inspiration you provided, and the
pleasant process that you led made a significant difference in the outcome.

I would also like to thank Abhinav Duggal for his excellent advice and ideas, as well
as providing an interesting viewpoint from the industry.

For their support and unconditional love, I am grateful to my parents, Meirav and
Yosi in particular. Lastly, I would like to thank all of my friends for their support and
friendship, which made the experience so much richer.

The generous financial help of the Technion is gratefully acknowledged.
This research was supported by the Israel Science Foundation (grant No. 807/20).

 

 

 



 

 

 



Contents

List of Figures

Abstract 1

1 Introduction 3

2 Background and related work 5
2.1 Data deduplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Data migration in distributed deduplication systems . . . . . . . . . . . 5
2.3 Fingerprint sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Existing data migration approaches . . . . . . . . . . . . . . . . . . . . . 7

3 Motivation and problem statement 9
3.1 Minimizing migration traffic . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Clustering 13
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 File similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Traffic considerations (H1) . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Load-balancing considerations (H2) . . . . . . . . . . . . . . . . . . . . 16
4.6 Sensitivity to sample (H3) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Constructing the final migration plan (H4) . . . . . . . . . . . . . . . . 17

5 Implementation 19

6 Evaluation 21
6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Basic comparison between algorithms . . . . . . . . . . . . . . . 22
6.2.2 Sensitivity to Cluster’s configuration . . . . . . . . . . . . . . . . 26

 

 

 



6.2.3 Sensitivity to problem parameters . . . . . . . . . . . . . . . . . 30

7 Conclusions 35

Hebrew Abstract i

 

 

 



List of Figures

2.1 Initial system (a) and alternative migration plans: with optimal balance (b),
optimal traffic (c), and optimal deletion (d). All the blocks in the system are
of size 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Hierarchical clustering with the files from Figure 2.1 (top) and the dis-
tance matrices created in the process (bottom). . . . . . . . . . . . . . . 14

6.1 Reduction in system size of all systems and all algorithms (with and
without load balancing constraints. k = 13 and µ = 2%). . . . . . . . . . 23

6.2 Resulting balance of all systems and all algorithms (with and without
load balancing constraints. k = 13 and µ = 2%). . . . . . . . . . . . . . 24

6.3 Algorithm runtime for all systems and all algorithms (with and without
load balancing constraints. k = 13 and µ = 2%). . . . . . . . . . . . . . 25

6.4 Dissimilarities under different sampling rules with k = 13. . . . . . . . . 27
6.5 The distribution of migration traffic (top) and reduction in system size

(bottom) in the set of plans returned by Cluster for Linux-all with k = 13. 28
6.6 The distribution of migration traffic (top) and reduction in system size

(bottom) in the set of plans returned by Cluster for Linux-all with k = 13
under different number of random seeds. . . . . . . . . . . . . . . . . . . 29

6.7 The distribution of migration traffic (top) and reduction in system size
(bottom) in the set of plans returned by Cluster for different datasets
with k = 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.8 Linux-skip system with 5 volumes, µ = 2%, and two sampling degrees:
k = 8, 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.9 UBC-500 system with k = 13 and different load balancing margins. . . . 32
6.10 UBC-500 system with k = 13 and different load balancing margins -

runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.11 Linux-skip with different numbers of target volumes with Tmax = 100, k =

13, µ = 2%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

 

 

 



 

 

 



Abstract

Deduplication is a leading method for reducing physical storage capacity when duplicate
data is present. This method can be applied on chunks, files, containers, and more.
Instead of storing the same physical data multiple times, a pointer is created from each
logical copy to the same physical copy, saving the space of the duplicate data. Due to
this, data is shared between objects, such as files or entire directories, which result in
garbage collection overhead and migration challenges.

In our work, we addressed the general migration problem where files are remapped
between different volumes due to system expansion or maintenance. The question
of which files and blocks to migrate has been extensively studied in systems without
deduplication. However, only simplified migration problems have been considered in the
context of deduplicated storage. As part of a migration plan, we aim to minimize the
system’s size while simultaneously ensuring that the storage load is evenly distributed
across the volumes and that the network traffic required for the migration does not
exceed its allocation.

Following that, we outline a way to develop effective migration plans using hier-
archical clustering. Clustering refers to grouping objects based on their similarity.
Hierarchical clustering, in particular, takes the distance between those objects into
account. Each object is initially clustered separately, and the process of iterative clus-
tering merges, in each step, two clusters with a minimal distance between them. We
are interested in clustering files with high similarity together in order to reduce the
amount of physical data while still maintaining low network traffic and a balanced
system. Based on each cluster, we calculate data savings, traffic consumed, and load
balance achieved and determine the plan’s quality.

We show that this method has different tradeoffs between computation time and
migration efficiency compared to other algorithms such as greedy and ILP (Integer
Linear Programming). Our algorithm achieves almost identical results (and sometimes
even better) than ILP, which, theoretically, is optimal, but in much less time.

1

 

 

 



2

 

 

 



Chapter 1

Introduction

Deduplication of data is often used in large-scale storage systems in order to reduce their
size. As a result of deduplication, multiple files with duplicate data blocks are identified
and replaced with pointers pointing to the same block in the system. Although the
size of the system is reduced, there is an increase in its complexity. Academic studies
and commercial systems have already addressed the complexity of reading, writing, and
deleting data in deduplicated storage systems, but there are still high-level management
aspects of large-scale systems to be addressed, such as capacity planning, caching, and
quality and cost factors [SCJ16].

We have been investigating the process of data migration, which involves moving files
between deduplication domains, or volumes. One volume can represent a single machine
within a larger system, or it may represent a group of machines dedicated to a single
customer or dataset. The system might remap files if a volume reaches its capacity limit
or if another bottleneck forms. Due to the data dependencies between files introduced
by deduplication, selecting which files to migrate requires new considerations: when
a file is migrated, some of its blocks may be removed from the original volume, while
others may still belong to other files in the volume. Similar to this, some blocks may
need to be transferred to the target volume, while others might be already present. A
successful migration plan aims to optimize several objectives, some of which may be in
conflict: physical size of the data after migration, load balancing of the physical data
stored among system volumes, and network bandwidth generated by the migration
process itself.

Numerous studies have described simplified (case-specific) data migration in dedu-
plicated systems in recent years. As part of their study, Harnik et al. [HHS+19] dis-
cussed capacity estimation and present a greedy algorithm for reducing system size.
Rangoli [NK13] deletes files as part of a greedy algorithm to reclaim some of the sys-
tem’s capacity. By using ILP (integer linear programming), GoSeed [NSKY21] solves
the seeding problem of remapping files into an initially empty volume, called seeding.

Our work deals with the general case of data migration. We can think of the
data migration problem in its most general form as an optimization problem that aims

3

 

 

 



to minimize the overall size of the system. The migration plan should also consider
traffic and load balancing. Having these constraints enforced to a specific degree allows
administrators to prioritize different costs by making good use of the solution space.
Consequently, the challenge of data migration in deduplicated systems is to choose
what to migrate, where to migrate from, and how to migrate with the constraints of
traffic and load balancing specified by administrators. On the general case of data
migration, an ILP approach and an extended greedy approach [KKD+22] of Harnik et
al.’s [HHS+19] were applied.

Using hierarchical clustering, we introduce an algorithm that, to the best of our
knowledge has never been applied to data deduplication. Files similar to each other
are grouped into clusters, where the target number of clusters equals the number of
volumes in the system. Clustering incorporates the physical location of the files, such
that the similarity between files reflects their shared blocks and their initial locations.
The migration plan assigns clusters to volumes based on the existing blocks on the
volumes, and it remaps each file to its assigned cluster.

Our algorithm was implemented and evaluated on six system snapshots derived from
three public datasets [FSL, MB11, Lin]. Using our algorithm, we demonstrate that we
can reduce the system’s size while complying with traffic and load balancing constraints.
The clustering algorithm obtains results that are comparable, and sometimes even
better, than the theoretically optimal ILP-based approach. Furthermore, the clustering
algorithm runs much faster. It also performs better than the greedy algorithm.

4

 

 

 



Chapter 2

Background and related work

2.1 Data deduplication

By definition, deduplication means splitting incoming data into separate chunks known
as blocks. Each block must be hashed to create a fingerprint that can be used to
identify duplicate blocks and retrieve their unique copies from storage. This process re-
quires the optimization of several aspects to maintain the storage system’s performance.
A few of them are chunking and fingerprinting [Man94, XJF+14, XZJ+16, MCM01,
AAA+10], indexing and lookups [ZLP08, SBGV12, ADK+18], as well as reassembling
files quickly [LEB+09, LSD+14, DSL10, SBGV12, CLZ11, YJTL16, LLD+14]. Though
deduplication was initially used for backup and archiving purposes, it is now increas-
ingly used for primary storage.

2.2 Data migration in distributed deduplication systems

Many distributed deduplication designs have been introduced in academic and com-
mercial studies [CAVL09, DGH+09, GE11]. Here, we emphasize those that contain a
separate fingerprint index for each physical server [DDL+11, BELL09, HHS+19, BLC14,
DDS+17]. The design choice not only maintains a small index size and a low lookup
cost, it also simplifies the client-side logic and facilitates garbage collection on the server
side. This design defines a deduplication domain by a server (volume), which means,
for instance, that duplicate blocks can only be found within that volume. Thus, files
that are mapped to a specific volume refer to blocks that are physically present on that
volume.

Traditional distributed systems differ from deduplicated systems in that striping
files across volumes reduces deduplication even if using a content-based chunking algo-
rithm. It also makes garbage collection more difficult when splitting files across clusters.
Additionally, many storage systems (such as those from IBM [HHS+19] and DataDo-
main [DJS+19]), which operate as independent “islands” of storage within the data
center or across data centers, perform deduplication within each individual subsystem,

5

 

 

 



(a) Initial system: balance = 1/5
(b) Alternative 1: deletion=0, traffic=2,

balance=1

(c) Alternative 2: deletion=1/9, traffic=0,
balance=0

(d) Alternative 3: deletion=3/9, traffic=1,
balance=0

Figure 2.1: Initial system (a) and alternative migration plans: with optimal balance (b),
optimal traffic (c), and optimal deletion (d). All the blocks in the system are of size 1.

as well as migrating files between them to re-balance the system as a whole.
If a subsystem becomes full but a different subsystem has capacity, migration may

be a better and cheaper alternative than adding capacity to a full system. Existing
mechanisms move only the metadata of files and chunks that are not already present in
the target subsystem [DJS+19]. As with typical backup customers, monthly migration
aligns with average retention periods.

Due to the relationship between the logical file’s location and the physical location
of its blocks, when a file is remapped from its volume, all its blocks must be relocated
to the new volume. Furthermore, the file’s blocks may belong to other files, so they
cannot be necessarily removed from their original volume. In Figure 2.1(a), remapping
file F2 from volume V2 to volume V1 results in the system in Figure 2.1(b). Since Block
B1 is already present on V1, it is deleted from V2. Additionally, Block B2 is not present
on V1 in the initial system, and Block B3 is also absent, so both are moved to V1.
Instead of being deleted from V2 as in the case of B2, B3 belongs to F3 and must be
replicated instead of being moved. Both the original system and this alternative have
nine blocks as their total size.

2.3 Fingerprint sampling

Traditionally, sampling is used to manage large problems and has been used in dedupli-
cation systems to enhance the efficiency of the deduplication process [LEB+09, BELL09,
CLZ11], route streams to servers [DDL+11], estimate deduplication ratios [HKS16], and
manage volume capacity [HHS+19]. Using a sampling degree of k includes all chunks
with k leading zeros in their fingerprints, as well as those files containing those chunks.
The sample will contain 1

2k of the original chunks if the fingerprint values are uniformly
distributed, so the sample will simulate a much smaller system. Therefore, perform-
ing calculations on the sampled system should be much easier and faster. Harnik et

6

 

 

 



al. [HHS+19] demonstrate that k = 13 is sufficient to estimate the capacity of dedu-
plicated volumes larger than 100GB with small errors. With sampling, the size of the
problem instance is reduced by a predictable factor: increasing the sampling degree k

by one results in a halving of the number of blocks.

2.4 Existing data migration approaches

The greedy iterative algorithm of Harnik et al. [HHS+19] aims to reduce the capacity in
multi-volume deduplicated systems. Files are selected based on the space saving ratio
from remapping a specific file to each of the other volumes: the amount of space it will
take up in the target volume divided by the amount of space that can be reclaimed
from the source volume. The mapping with the lowest ratio is remapped to a new
volume at each iteration and the procedure is repeated until the desired deletion has
been accomplished.

This approach led to the development of an iterative greedy algorithm for general
migration [KKD+22]. The algorithm consists of a repeating phase with a predefined
traffic allocation for each phase. To achieve the load balancing goal and minimize
the capacity of the system, each phase consists of two alternating steps. The load
balancing step focuses on load balancing the system. The goal is to remap a file
between two volumes ⟨source, target⟩, with the source volume being the largest and
the target volume being the smallest, for which such a file exists. During the capacity-
reduction step, the goal is to reduce the overall capacity of the system without affecting
load balance. As with the original greedy algorithm [HHS+19], the file with the lowest
space saving ratio is selected for remapping while ensuring that no load balancing
violation occurs.

GoSeed [NSKY21] addresses a simplified version of data migration known as seeding,
in which all data is mapped to a single volume at the beginning. This migration aims to
erase some of a volume’s blocks by mapping files to the empty target volume [DJS+19].
The seeding problem is modeled as an ILP (integer linear programming) problem in
GoSeed. GoSeed’s solution determines which files and blocks are moved from the source
volume to the target volume, and which are replicated to create copies on both volumes.
The existence of open-source [SYM, lps, GNU] and commercial [CPL, Gur] ILP-solvers
enables the efficient solution of this NP-hard problem using heuristics.

[KKD+22] addresses general migration by using ILP. In this approach, the main
objective is to minimize the system’s capacity, as in GoSeed, while both network traffic
and load balancing constraints are enforced to ensure a valid migration plan.

Rangoli [NK13] is an algorithm for space reclamation that selects a set of files for
deletion to reduce the physical size of the system. This is another specific case of
data migration. Rangoli [NK13] groups files into roughly equal-sized bins based on
the blocks they share, and then picks the bin with the smallest amount of data shared
with other bins. Among the discussions in Shilane et al.’s [SCJ16] are additional data

7

 

 

 



migration scenarios and their resulting difficulties in deduplicated systems.

8

 

 

 



Chapter 3

Motivation and problem
statement

3.1 Minimizing migration traffic

High-performance storage systems typically limit the portion of their network band-
width that can be used for maintenance tasks such as reconstruction of data from
failed storage nodes [RSG+13, HSX+12]. Data migration naturally involves signifi-
cant network bandwidth consumption, and traditional data migration plans and mech-
anisms strive to minimize their network requirements as one of their optimization
goals [LAW02, MHS18, TAB11, DJS+19, AHK+02, AHH+01]. In this work, we fo-
cus on the amount of data that is moved between nodes. The physical layout of the
nodes and the precise scheduling of the migration are outside the scope of our current
work.

In deduplicated storage, we distinguish between two costs associated with data
migration. The migration traffic is the amount of data that is transferred between
volumes during migration. The replication cost is the total size of duplicate blocks that
are created as a result of remapping files to new volumes. Previous studies of data
migration in deduplicated systems did not consider bandwidth explicitly. Harnik et
al. [HHS+19] did not address this aspect at all. In the seeding problem addressed by
GoSeed [NSKY21], the migration traffic is implicitly minimized as a result of minimiz-
ing the replication cost. In the general case, however, migration traffic is potentially
independent of the amount of data replication.

For example, Alternative 1 in Figure 2.1(b) results in transferring two blocks, B2

and B3, between volumes, even though B2 is eventually deleted from its source volume.
In contrast, the alternative migration plan in Figure 2.1(c) does not consume traffic
at all: file F1 is remapped to V2 which already stores its only block, and thus B1 can
simply be deleted from V1. This alternative also reduces the system’s size to eight
blocks, making it superior to the first alternative in terms of both objectives. We note,
however, that this is not always the case, and that minimizing the overall system size

9

 

 

 



and minimizing the amount of data transferred might be conflicting objectives.

3.2 Load Balancing

Load balancing is a major objective in distributed storage systems, where it often con-
flicts with other objectives such as utilization and management overhead [AHK+02,
WBMM06, NEF+12]. Distributed deduplication introduces an inherent tradeoff be-
tween minimizing the total physical data size and maximizing load balancing: the sys-
tem’s size is minimized when all the files are mapped to a single volume, which clearly
gives the worst possible load balancing. Thus, distributed deduplication systems weigh
the benefit of mapping a file to the volume that contains similar files, against the need
to distribute the load evenly between the volumes. Load balancing can refer to vari-
ous measures of load, such as IOPS, bandwidth requirements, or the number of files
mapped to each volume.

We follow previous work and aim to evenly distribute the capacity load between
volumes [BELL09, DDL+11, KKD+22]. Balancing capacity is especially important in
deduplicated systems that route incoming files to volumes that already contain similar
files. In such designs, volumes whose storage occupancy is slightly higher than others
might quickly become overloaded due to their larger amount of data ‘attracting’ even
more new files, and so on. Capacity load balancing can be expected to lead to better
network utilization and prevent specific volumes from becoming a bottleneck or ex-
hausting their capacity. While performance load balancing is not our main objective,
we expect it to improve as a result of distributing capacity.

In this work, we capture the load balancing in the system with the balance metric,
which is similar to a commonly used fairness metric [GWM07]—the ratio between the
size of the smallest volume in the system and that of the largest volume. For example,
the balance of the initial system in Figure 2.1(a) is |V1|/|V2| = 1/5. Alternative 1 (Fig-
ure 2.1(b)) is perfectly balanced, with balance = 1, while Alternative 2 (Figure 2.1(c))
has the worst balance: |V1|/|V2| = 0.

3.3 Problem statement

There are various approaches for handling conflicting objectives in complex optimiza-
tion systems. These include searching for the Pareto frontier [ZKT08], or defining a
composite objective function of weighted individual objectives. We chose to keep the
system’s size as our main objective, and to address the migration traffic and load bal-
ancing as constraints on the migration plan. We define the general migration problem
by extending the seeding problem from [NSKY21], and thus we reuse some of their
notations for compatibility.

For a storage system S with a set of volumes V , let B = {b0, b1, . . .} be the set
of unique blocks stored in the system, and let size(b) be the size of block b. Let

10

 

 

 



F = {f0, f1, . . .} be the set of files in S, and let IS ⊆ B ×F ×V be an inclusion relation,
where (b, f, v) ∈ IS means that file f mapped to volume v contains block b which stored
in this volume. We use b ∈ v to denote that (b, f, v) ∈ IS for some file f . The size of a
volume is the total size of the blocks stored in it, i.e., size(v) = Σb∈vsize(b). The size
of the system is the total size of its volumes, i.e., size(S) = size(V ) = Σv∈V size(v).

The general migration problem is to find a set of files FM ⊆ F to migrate, the
volume each file is migrated to, the blocks that can be deleted from each volume, and
the blocks that should be copied to each volume. Applying the migration plan results
in a new system, S′. The migration goal is to minimize the size of S′. This is equivalent
to maximizing the size of all the blocks that can be deleted during the migration, minus
the size of all the blocks that must be replicated.

The traffic constraint specifies Tmax—the maximum traffic allowed during migra-
tion. It requires that the total size of blocks that are added to volumes they were
not stored in is no larger than Tmax. The load balancing constraint determines how
evenly the capacity is distributed between the volumes. It specifies a margin 0 ≤ µ < 1
and requires that the size of each volume in the new system is within µ of the aver-
age volume size. For a system with |V | volumes, this is equivalent to requiring that
balance ≤ [size(S′)/|V |×(1−µ)]/[size(S′)/|V |×(1+µ)].

For example, for the initial system in Figure 2.1(a), Alternative 1 (Figure 2.1(b))
is the only migration plan that satisfies the load balancing constraint (for any µ). For
Tmax lower than 2/9, no migration is feasible. On the other hand, if we remove the
load balancing constraint, the optimal migration plan depends on the traffic constraint
alone: Alternative 2 (Figure 2.1(c)) is optimal for, e.g., Tmax = 0, and Alternative 3
(Figure 2.1(d)) is optimal for Tmax = 3.

3.4 Refinements

This generalized problem can be refined in several straightforward ways. For example,
we can restrict the set of files that may be included in FM , the set of volumes from
which files may be removed, or the set of volumes to which files can be remapped.
Similarly, we can require that a specific volume be removed from the system (enforcing
all its files to be remapped), or that an empty volume be added. We demonstrate some
of these cases in our evaluation.

11

 

 

 



12

 

 

 



Chapter 4

Clustering

4.1 Overview

Clustering is a well-known technique for grouping objects based on their similarity [clu].
It is fast and effective, and is directly applicable to our domain: files are similar if they
share a large portion of their blocks. Our approach is thus to create clusters of similar
files and to assign each cluster to a volume, remapping those files that were assigned
to a volume different from their original location. Despite its simplicity, three main
challenges (Ch1 − Ch3) are involved in applying this idea to the general migration
problem.

(Ch1) Unpredictable traffic The traffic required for a migration plan can only be
calculated after the clusters have been assigned to volumes. When the clustering
decisions are being made, their implications on the overall traffic are unknown and
thus cannot be taken into consideration.

(Ch2) Unpredictable system size The load-balancing constraint is given in terms
of the system’s size after migration. However, this size is required to ensure, during
the clustering process, that the created clusters are within the allowed sizes.

(Ch3) High sensitivity The file similarity metric is based on the precise set of blocks
in each file. When this metric is applied to a sample (subsection 2.3) of the storage
system’s fingerprints, it is highly sensitive to the sampling degree and rule.

We address these challenges with several heuristics (H1 − H4):

(H1) Traffic weight We define a new similarity metric for files. This metric is a
weighted sum of the files’ content similarity and a new distance metric that indicates
how many source volumes contain files within a cluster. Our algorithm considers
files as similar if they contain the same blocks and are mapped to the same source
volume. Assigning a higher weight (WT ) to the content similarity will result in a
smaller system but higher migration traffic.

(H2a) Estimated system size We further use the weight to estimate the size of the
system after migration. We calculate the size of a hypothetical system without du-

13

 

 

 



plicates, and predict that higher migration traffic will bring the system closer to this
hypothetical optimum.

(H2b) Clustering retries We use the estimated final system size to determine the
maximum allowed cluster size. During the clustering process, we stop adding files to
clusters that reach this size. If the process halts due to this limitation, we increase
the maximum size by a small margin, and restart it.

(H3) Randomization Instead of deterministic clustering decisions, we choose a ran-
dom option from the set of best options. Different random seeds potentially result in
different systems.

(H4) Multiple executions Our heuristics introduce several parameters which we
would be loath to overfit. We use the same initial state to perform repeated exe-
cutions of the clustering process with multiple sets of parameter combinations (180
in our case), and choose the best migration plan from those executions as our final
output.

In the following, we give the required background on the clustering process and describe
each of our optimizations in detail.

Figure 4.1: Hierarchical clustering with the files from Figure 2.1 (top)
and the distance matrices created in the process (bottom).

4.2 Hierarchical clustering

Hierarchical clustering [GP13] is an iterative clustering process that, in each iteration,
merges the most similar pair of clusters into a new cluster. The input is an initial set of
objects, which are viewed as clusters of size 1. The process creates a tree whose leaves
are the initial objects, and internal nodes are the clusters they are merged into. For
example, Figure 4.1 shows the clustering hierarchy created from the set of initial objects
{F1, ..., F5}, where the clusters {C1, ..., C4} were created in order of their indices.

14

 

 

 



Hierarchical clustering naturally lends itself to grouping of files. Intuitively, files
that share a large portion of their blocks are similar and should thus belong to the
same cluster and eventually to the same volume. For example, the initial objects in
Figure 4.1 represent the files in Figure 2.1(a): F4 and F5 share two blocks and are thus
merged into the first cluster, C1. Our clustering-based approach is simple: we group the
files into a number of clusters equal to the number of volumes in the system and assign
one cluster to each volume. This assignment implies which files should be remapped
and which blocks should be transferred and/or deleted in the migration. For example,
for a system with three volumes, we could halt the clustering process in Figure 4.1,
resulting in a final set of three clusters: {C1, C2, F3}. We develop this basic approach
to the general migration problem, i.e., to maximize the deletion and to comply with
the traffic and load-balancing constraints.

4.3 File similarity

The hierarchical clustering process relies on a similarity function that indicates which
pair of clusters to merge in each iteration. We use the commonly used Jaccard in-
dex [GP13] for this purpose. For two sets A and B, their Jaccard index is defined
as J(A, B) = |A∩B|/|A∪B|. We view each file as a set of blocks, and thus, the Jaccard
index for a pair of files is the portion of their blocks that are shared. From hereon,
we refer to the complement of the index: the Jaccard distance which is defined as
distJ = J(A, B) = 1 − J(A, B). This is to comply with the standard terminology in
which the two clusters with the smallest distance are merged in each iteration. For
example, the leftmost table in Figure 4.1 depicts the distance matrix for the files in
Figure 2.1. Indeed, the distance is smallest for the pair F4 and F5 which are the first
to be merged.

The Jaccard distance could easily be applied to entire clusters, which can themselves
be viewed as sets of blocks. However, calculating the distance between each new cluster
and all existing clusters would require repeated traversals of the original file blocks
in each iteration. This complexity is addressed in hierarchical clustering by defining
a linkage function, which determines the distance between the merged cluster and
existing clusters based on the distances before the merge. Let A,B,C each be a cluster,
where A and B are merged into a single cluster. We use complete linkage to define the
distance between the newly merged cluster and the remaining clusters in the system:
distJ(A ∪ B, C) = max{distJ(A, C), distJ(B, C)}. For example, the row for C1 in the
second distance matrix in Figure 4.1 lists the distances between C1 and each of the
remaining files.

15

 

 

 



4.4 Traffic considerations (H1)

We limit the traffic required by our migration plan in two ways. The first is by assigning
each of the final clusters to the volume that contains the largest number of its blocks.
We calculate the size of the intersection (in terms of the size of the shared blocks)
between each cluster and each volume in the initial system. We then iterativly pick the
⟨cluster, volume⟩ pair with the largest intersection from the clusters and volumes that
have not yet been assigned.

This assignment alone might still result in excessive traffic, especially if highly sim-
ilar files are initially scattered across many different volumes. To avoid such situations,
we incorporate the traffic considerations into the clustering process itself. Namely, we
define the volume distance, distV (C), of a cluster as the portion of the system’s volumes
whose files are included in the cluster. For example, in Figure 4.1, distV (C1) = 1/3 and
distV (C2) = 2/3.

We then define a new weighted distance metric that combines the Jaccard distance
and the volume distance: distW (A, B) = WT × distJ(A, B) + (1 − WT ) × distV (A ∪ B),
where 0 ≤ WT ≤ 1 is the traffic weight. Intuitively, increasing WT increases the amount
of traffic allocated for the migration, which increases the priority of deduplication effi-
ciency over the network transfer cost. Nevertheless, it does not guarantee compliance
with a specific traffic constraint as shown in subsection 6.2.2. We address this limitation
by multiple executions, described below.

4.5 Load-balancing considerations (H2)

We enforce the load balancing constraint by preventing merges that result in clusters
that exceed the maximal volume size. We determine the maximal cluster size by es-
timating the system’s size after migration. Intuitively, we expect that increasing the
traffic allocated for migration will increase the reduction in system size, and we esti-
mate this traffic with the WT weight described above. Formally, we estimate the size of
the final system as Size(WT ) = WT ×Sizeuniq +(1−WT )×size(Sinit), where Sizeuniq

is the size of all the unique blocks in the system. The maximal cluster size is thus
Cmax = Size(WT )/|V |

In each clustering iteration, we ensure that the merged cluster is not larger than
Cmax. This requirement might result in the algorithm halting before the target number
of clusters is reached, due to merging decisions made earlier in the process. If this
happens, we increase the value of Cmax by a small ϵ and retry the clustering process,
although it might also not adhere to our original load balancing constraint. We continue
retrying until the algorithm creates the required number of clusters. A small ϵ can
potentially yield the most balanced system, but might require excessively many retries.
We use ϵ = 5% as our default.

For instance, using the system in figure 2.1(a) with WT = 0.1, we can deduct

16

 

 

 



Cmax. First, we calculate that Sizeuniq = 6, since there are 6 blocks in the system.
Then, we infer that size(Sinit) = 9, because there are 9 physical blocks scattered across
the initial system. From that, it is easy to calculate Size(WT ) using our WT = 0.1:
Size(WT ) = 0.1 × 6 + (1 − 0.1) × 9 = 8.7 and Cmax which is Size(WT )/|V | = 8.7/3 = 2.9.
Any pair of clusters merged together would yield a cluster larger than Cmax in size
because any pair would contain at least 3 unique blocks. Therefore we increase Cmax

by ϵ = 5% to Cmax = 3.045 and repeat the clustering process successfully with the
merge of F4 and F5 of size 3, which was previously forbidden.

4.6 Sensitivity to sample (H3)

We apply the hierarchical clustering process to a sample of the system, rather than to
the complete set of blocks which can be excessively large. However, it turns out that
the Jaccard distance is highly sensitive to the precise set of blocks that represent each
file in the sample. We found, in our initial experiments, that different sampling degrees
as well as different sampling rules (e.g., k leading ones instead of k leading zeroes in
the fingerprint) result in small differences in the Jaccard distance of the file pairs, as
described in subsection 6.2.2.

Such small differences might change the entire clustering hierarchy, even if the
practical difference between the pairs of files is very small. Thus, rather than merging
the pair of clusters with the smallest distance, we merge a random pair from the set of
pairs with the smallest distances. We include in this set only pairs whose distance is
within a certain percentage of the minimum distance. Thus, for a maximum distance
difference gap, we choose a random pair⟨Ci, Cj⟩ from the 10 (or less) pairs for which
DistW (Ci, Cj) ≤ minimum distance × (1 + gap).

4.7 Constructing the final migration plan (H4)

The main advantage of our clustering-based approach is its relatively fast runtime.
Constructing the initial distance matrix for the individual files is time consuming, but
the same initial matrix can be reused for all the consecutive clustering processes on
the same initial system. We exploit this advantage to eliminate the sensitivity of our
clustering process to the many parameters introduced in this chapter. For the same
given system and migration constraints, we execute the clustering process with six
traffic weights (WT ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}), three gaps (gap ∈ {0.5%, 1%, 3%}), and
ten random seeds. This results in a total of 180 executions, some of which are performed
in parallel (depending on the resources of the evaluation platform). We calculate the
deletion, traffic, and balance of each migration plan (on the sample used as the input
for clustering), and as our final result, use the plan with the best deletion that satisfies
the load-balancing and traffic constraints.

We also include in our evaluation a relaxed scheme without the load-balancing

17

 

 

 



constraint (i.e., Cmax = ∞). In this scheme, the final migration plan must only satisfy
the traffic constraint.

18

 

 

 



Chapter 5

Implementation

The clustering algorithm creates a |F | × |B| bit matrix to indicate whether each file
contains each block, and uses it to create the distance matrix (see Figure 4.1). The
clustering process uses and updates only the lower triangular of this matrix. We use the
upper triangular to record the initial distances, and to reset the lower triangular when
the clustering process is repeated for the same system and different input parameters
(WT , gap, or random seed). When the clustering process completes, we use the file-
block bit matrix to determine the assignment of clusters to volume. Our program
consists of approximately 1000 lines of C++ code and is available online [Git]. Each
clustering process is performed on a private copy of the distance matrix within a single
thread, and our evaluation platform is sufficient for executing six processes in parallel.

19

 

 

 



20

 

 

 



Chapter 6

Evaluation

6.1 Experimental setup

We ran our experiments on a server running Ubuntu 18.04.3, equipped with 128GB
DDR4 RAM (with 2666 MHz bus speed), Intel® Xeon® Silver 4114 CPU (with hyper-
threading functionality) running at 2.20GHz, one Dell®T1WH8 240GB TLC SATA
SSD, and one Micron 5200 Series 960GB 3D TLC NAND Flash SSD.

File system snapshots. We used two static file system snapshots from datasets
used to evaluate the seeding problem [NSKY21]: The UBC dataset [MB11, SNI] in-
cludes file systems of 857 Microsoft employees, of which we used the first 500 file systems
(UBC-500). The FSL dataset [FSL] consists of snapshots of students’ home directories
at the FSL Lab at Stony Brook University [SKM+16, TMB+12]. We used nine weekly
snapshots of nine users between August 28 and October 23, 2014 (Homes). These snap-
shots include, for each file, the fingerprints of its chunks and their sizes. Each snapshot
file represents one entire file system, which is the migration unit in our model, and is
represented as one file in our migration problem instances.

We created two additional sets of snapshots from the Linux version archive [Lin]
obtained from [Ded22]. Our Linux-all dataset includes snapshots of all the versions
from 2.0 to 5.9.14. We also created a smaller dataset, Linux-skip, which consists of
every 5th snapshot. The latter dataset is logically (approximately) 5× smaller than
the former, although their physical size is almost the same.

The UBC-500 and Homes snapshots were created with variable-sized chunks with
Rabin fingerprints, whose specified average chunk size is 64KB. We created the Linux
snapshots with an average chunk size of 8KB, because they are much smaller to begin
with. We used these sets of snapshots to create six initial systems, with varying numbers
of volumes. They are listed in Table 6.1. We emulate the ingestion of each snapshot
into a simplified deduplication system which detects duplicates only within the same
volume. In the UBC and Linux systems we assigned the same number of arbitrary
snapshots to each volume. In the Homes-week system, we assigned snapshots from the
same week to the same volume, such that each volume contains all the users’ snapshots

21

 

 

 



System Files |V | Chunks Dedupe Logical
UBC-500 500 5 382M 0.39 19.5 TB

Homes-week 81 3 19M 0.38 8.9 TB
Homes-user 81 3 19M 0.16 8.9 TB
Linux-skip 662 5 / 10 1.76M 0.12 / 0.19 377 GB
Linux-all 2703 5 1.78M 0.03 1.8 TB

Table 6.1: System snapshots in our evaluation. |V | is the number of volumes, Chunks
is the number of unique chunks, and Dedupe is the deduplication ratio—the ratio

between the physical and logical size of each system. Logical is the logical size.

from a set of three weeks. In the Homes-user system, we assign each user to a dedicated
volume such that each volume contains all the weekly snapshots of a set of three users.

The algorithm is executed on a sample of the system’s fingerprints, to reduce its
memory consumption and runtime. We use a sampling degree of k = 13 unless stated
otherwise. The final system size after migration, as well as the resulting balance and
consumed traffic are calculated on the original system’s snapshot. We use a calculator
similar to the one used in [NSKY21]: we traverse the initial system’s volumes and sum
the sizes of blocks that remain in each volume after migration and those that are added
to the volume as a result of it. We experimented with three Tmax values, 20%, 40%,
and 100% of each system’s initial size, and three µ values, 2%, 5%, and 10% of the
system size after migration.

6.2 Experimental results

We wish to answer two main questions: (1) how does the clustering algorithm (Cluster)
compare in terms of the final system size, load balancing, and runtime to the other
algorithms? and (2) how is the performance of the algorithm affected by the various
system and problem parameters?

6.2.1 Basic comparison between algorithms

Figure 6.1 shows the deletion—percentage of the initial system’s physical size that was
deleted by each algorithm. The deletion is higher for systems that were initially more
balanced, i.e., the Linux and Homes-weeks systems. For all the systems except UBC-
500, Greedy achieved significantly smaller deletion than Cluster. In UBC-500, there
is less similarity and therefore less dependency between files, which eliminates some of
the advantage that Cluster and ILP have over Greedy, which outperforms them when
Tmax = 100%.

ILP and Cluster achieve comparable deletions to one another, even though the
ILP solver attempts to find the theoretically optimal migration plan. We distinguish
between two cases when explaining this similarity. In the first case (Linux-skip and
Homes), the ILP-solver produces an optimal solution on the system’s sample, but it is
not optimal when applied to the full (unsampled) system. The deletion of Cluster is

22

 

 

 



Figure 6.1: Reduction in system size of all systems and all algorithms (with and
without load balancing constraints. k = 13 and µ = 2%).

up to 1% higher than that of ILP in those cases. In the second case, marked by a red
‘x’ in the figures, ILP times out (after six hours) and returns a suboptimal solution.
Therefore, Cluster reaches a better solution.

The ‘relaxed’ (R) version of the algorithms, without the load balancing constraint,
usually achieves a higher deletion than their full version. The largest difference is 558%,
although the difference is typically smaller, and can be as low as 1.3%. In the case of
Greedy in the Homes-users system, the relaxed version does not identify any file that
can be remapped, and does not return any solution.

Figure 6.2 shows the balance achieved by each algorithm. With a margin of µ = 2%
and five volumes, the balance should be at least 18/22 = 0.82. In practice, however, the
balance might be lower, for two main reasons. Greedy might fail to bring the system to
a balanced state if it exhausts (or thinks it exhausts) the maximum traffic allowed for
migration. In contrast, Cluster and ILP generate a migration plan that complies with
the load balancing constraint on the sample, but violates it when applied to the full
(unsampled) system. The violation is highest in the Linux systems, where some files

23

 

 

 



Figure 6.2: Resulting balance of all systems and all algorithms (with and without
load balancing constraints. k = 13 and µ = 2%).

(i.e., entire Linux versions) consist of only one or two blocks. Nevertheless, specifying
the load balancing constraint successfully improves the load balancing of the system.
Without it, the relaxed Cluster and ILP versions create highly unbalanced systems,
with some volumes storing no files at all, or very few small files. Greedy typically
avoids such extremes, because it is unable to identify and group similar files in the
same volume.

Figure 6.3 shows the runtime of each of the algorithms (note the log scale of the
y-axis). Greedy generates a migration plan in the shortest runtime: 20 seconds or
less. ILP requires the longest time, because it attempts to solve an NP-hard problem.
Indeed, except for the Homes systems that have the fewest files, ILP requires more
than an hour, and often halts at the six-hour timeout. The runtime of Cluster is longer
than that of Greedy, and usually shorter than that of ILP. It is still relatively long, as

24

 

 

 



Figure 6.3: Algorithm runtime for all systems and all algorithms (with and without
load balancing constraints. k = 13 and µ = 2%).

a result of performing 180 executions of the clustering process. We note, however, that
this runtime can be shortened by reducing the number of executions, e.g., by reducing
the number of random seeds or gaps. We evaluate the effect of these parameters in the
following subsection.

Removing the load balancing constraint reduces the runtime of ILP and Cluster by
one or two orders of magnitude. In ILP, this happens because the problem complexity
is significantly reduced. In Cluster, the clustering is completed in a single attempt,
without having to restart it due to illegal cluster sizes. Surprisingly, removing this
constraint from Greedy increases its run time. The reason is that each iteration in
the capacity-reduction step is much longer than those in the load-balancing step, as it
examines all possible file remaps between all volume pairs in the system. In the relaxed
Greedy version, all the traffic is allocated to capacity savings and thus its runtime

25

 

 

 



increases.
Implications. Our basic comparison leads to several notable observations. (1)

Cluster and ILP have a clear advantage over Greedy. This was not the case in previ-
ous studies that examined simple cases of migration, i.e., seeding [NSKY21] and space
reclamation [NK13]. However, the increased complexity of the general migration prob-
lem increases the gap between the greedy and the optimal solutions. (2) Cluster is
comparable and might even outperform ILP, despite the premise of optimality of the
ILP-based approach. This is a combination of the high complexity of the ILP problem
with the ability to execute multiple clustering processes quickly and in parallel. We
conclude that hierarchical clustering is highly efficient for grouping similar files, and
that our heuristics for addressing the traffic and load balancing constraints are highly
effective. (3) In most systems, adding the load balancing constraint limits the potential
capacity reduction, but this limit is usually modest, i.e., several percents of the system’s
size. The extent of this limitation depends on the degree of similarity between files and
the balance of the initial system.

6.2.2 Sensitivity to Cluster’s configuration

Introduction. The fingerprint sampling described in subsection 2.3 refers to the
method of selecting a portion of a dataset’s blocks in a way that retains the unique
characteristics of the dataset. We refer to the method by which we choose fingerprints
as the sampling rule. Sampling degree, denoted by k, is the extent to which this rule
is applied. If, for instance, the sampling degree is equal to 13 and the leading-zeros
sampling rule is used, only the blocks whose bit-wise representation of the fingerprint
has 13 leading zeros will be selected. Throughout our research, we found out that our
algorithm is highly sensitive to both sampling rule and sampling degree. This section
explores those sensitivities.

Effect of sampling rules. Sampling rule refers to the method by which we choose
fingerprints. There are a few sampling rules we examined throughout our research. (1)
leading-zeros - chooses only the blocks whose fingerprint contains k (sampling degree)
leading zeros. (2) leading-ones - chooses only the blocks whose fingerprint contains
k leading ones. (3) alternating zero-one - chooses only the blocks whose fingerprint
contains k alternating zeros and ones. For this sampling rule, if k = 7, for example,
only blocks whose fingerprint starts with 0101010 will be included in the sample.

Figure 6.4 shows ten pairs of files with their dissimilarities under those different
sampling rules. The results suggest that different sampling methods result in varying
dissimilarity values, as well as varying order of pairs based on that value, which dic-
tates which files should be merged. Essentially, the algorithm does not consider the
absolute dissimilarity values, but only the order of the pairs, as it picks the smallest
pair to merge regardless of the absolute value. As an example, let’s look at the pairs
⟨0, 10⟩ (white), ⟨0, 40⟩ (green) and ⟨10, 40⟩ (black). In accordance with the leading-

26

 

 

 



Figure 6.4: Dissimilarities under different sampling rules with k = 13.

zeros sampling rule, the pairs are ranked (best to worst, low to high) according to
their dissimilarity value: ⟨0, 40⟩, ⟨10, 40⟩, ⟨0, 10⟩. Alternatively, under leading-ones,
the order becomes ⟨10, 40⟩, ⟨0, 10⟩, ⟨0, 40⟩, while under alternating zero-one, the order
becomes ⟨10, 40⟩, ⟨0, 40⟩, ⟨0, 10⟩ which is also different. As we have found throughout
our research, different merging decisions in the initial stages of the clustering process
could result in a completely different migration plan. This observation motivated us to
add randomization to the clustering process, as described in Section 6.2.2

Effect of randomization on Cluster. Figure 6.5 shows the range of deletion
values and traffic usage of the migration plans generated by Cluster for Linux-all with
k = 13. Each bar shows the 25th, 50th, and 75th percentiles, and the whiskers show
the minimum and maximum values achieved with different random seeds for each com-
bination of gap and WT .

Our results show that different random seeds can result in large differences in the
deletion and traffic: up to 84% and 400%, respectively, when WT and gap are fixed.
At the same time, WT cannot predict the actual traffic used by the migration plan
since it is only used heuristically to simulate the traffic constraint. This is the reason
for repeating the clustering process for a range of WT values. Indeed, different WT

values result in very different values of deletion. For a given WT , the range of deletion
and traffic values generated by different gaps are similar. Thus, as no gap consistently

27

 

 

 



Figure 6.5: The distribution of migration traffic (top) and reduction in system size
(bottom) in the set of plans returned by Cluster for Linux-all with k = 13.

outperforms the others, executing the clustering with one or two gaps instead of three
will likely have a limited effect on the results while significantly reducing the runtime.

We repeated the same experiment with a different numbers of random seeds. Fig-
ure 6.6 shows that increasing the number of seeds from 5 to 15 (respectively increasing
the number of runs from 90 to 270) carries diminishing returns. Thus, in practice, it is
possible to halt the algorithm when additional runs do not improve the best solution
so far.

28

 

 

 



Figure 6.6: The distribution of migration traffic (top) and reduction in system size
(bottom) in the set of plans returned by Cluster for Linux-all with k = 13 under

different number of random seeds.

Finally, we examine whether the sensitivity to the configuration parameters differs
between different systems. We execute Cluster with three gaps and 10 random seeds
on three different systems. Figure 6.7 shows the results for each system and each value
of WT . As we expected, the traffic consumption is different in different systems. The
results for homes-users demonstrate that smaller systems are more sensitive to this
parameter, because each file consists of a larger portion of the entire system. Thus,
when the traffic weight of the similarity metric is small (small WT ), there are limited
options for clustering in the early stages of the process, and all random seeds result in
the same plan. However, as this weight is increased (WT > 0.6), the difference between
the migration plans increases dramatically.

29

 

 

 



Figure 6.7: The distribution of migration traffic (top) and reduction in system size
(bottom) in the set of plans returned by Cluster for different datasets with k = 13.

Effect of sampling degree. Figure 6.8 shows the deletion, load balancing, and
runtime of all the algorithms on two samples of the Linux-skip system. The small and
large samples were generated with sampling degrees of k = 13 and k = 8, respectively.
The sample size affects each algorithm differently. Cluster returns similar results for
both sample sizes because the differences in the accuracy of the sample are masked by
its randomized process while greedy achieves a higher deletion on the larger sample (by
up to 238%) and ILP suffers from the increase in the problem size. All the algorithms
return a more balanced system for the larger sample (k = 8), because the load-balancing
constraint is enforced on more blocks, and thus more accurately. At the same time,
as we expected, their runtime was higher by several orders of magnitude, as the large
sample included 25× more blocks than the small one. As a result of those effects and in
order to prevent those from happening, we chose to use randomization in our algorithm.

6.2.3 Sensitivity to problem parameters

Effect of load balancing and traffic constraints. Figure 6.9 shows the deletion,
balance, and traffic consumption of all the algorithms on the UBC-500 system with

30

 

 

 



Figure 6.8: Linux-skip system with 5 volumes, µ = 2%, and two sampling degrees:
k = 8, 13.

31

 

 

 



Figure 6.9: UBC-500 system with k = 13 and different load balancing margins.

32

 

 

 



different values of Tmax and µ. The results on this system show the highest sensitivity
to these constraints due to the relatively low similarity between its files. The deletion
achieved by all the algorithms increases as Tmax increases, and their traffic consumption
increases accordingly. Removing the load-balancing constraint also allows for more
deletion, as we observed in Figure 6.1. At the same time, the precise value of the
load balancing margin, µ, has a much smaller effect on the achieved deletion, although
in most cases, a lower margin does guarantee a more balanced system. As shown in
Figure 6.10, increasing the margin usually increases the runtime of Greedy, as a result
of more space-reduction iterations. The runtime of ILP and Cluster is not affected by
the precise value of µ.

Figure 6.10: UBC-500 system with k = 13 and different load balancing margins -
runtime

Effect of the number of volumes. Figure 6.11 shows the deletion and runtime of
the algorithms on the Linux-skip system when the number of volumes is reduced (‘4’),
increased (‘6’), or is larger overall (‘10’). Due to the high similarity between the Linux
versions, the same deletion is achieved when the number of volumes remains five, or
when a volume is added or removed (the reduced performance of Cluster is an outlier
for µ = 2%). When the initial number of volumes is 10, there are more duplicates in
the system. This provides more opportunities for deletion, which is indeed higher.

The number of volumes affects the problem’s complexity, affecting each algorithm
differently. Greedy requires less time when a volume is added or removed (compared
to a problem where the number of volumes remains the same) while the ILP problem
complexity increases with every additional volume and thus its runtime increases until
it reaches the timeout. The clustering process could, potentially, stop at an earlier
stage when more clusters are needed. However, as the number of clusters increases the
load balancing constraint is encountered at an earlier stage, causing the clustering to
restart more often when the number of volumes is higher.

33

 

 

 



Figure 6.11: Linux-skip with different numbers of target volumes with
Tmax = 100, k = 13, µ = 2%.

34

 

 

 



Chapter 7

Conclusions

We formulated the general migration problem for storage systems with deduplication,
and presented an algorithm for generating an efficient migration plan. Our evalua-
tion showed that the greedy approach is the fastest but least effective, and that our
clustering-based approach is comparable to the one based on ILP, despite ILP’s premise
of optimality. While the ILP-based approach guarantees a near-optimal solution (given
sufficient runtime), clustering lends itself to a range of optimizations that enable it to
produce such a solution faster.

Our approach can be applied to more specific cases of migration, presenting addi-
tional opportunities for further optimizations in the future. For example, thanks to
its short runtime, we can use our algorithm to generate multiple plans with different
traffic constraints. These plans are points on the Pareto frontier [ZKT08], i.e., they
represent different tradeoffs between the conflicting objectives of maximizing deletion
and minimizing traffic.

35

 

 

 



36

 

 

 



Bibliography

[AAA+10] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula Balachandran,
Pushkar Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and
George Varghese. EndRE: An end-system redundancy elimination ser-
vice for enterprises. In 7th USENIX Conference on Networked Systems
Design and Implementation (NSDI 10), 2010.

[ADK+18] Yamini Allu, Fred Douglis, Mahesh Kamat, Ramya Prabhakar, Philip Shi-
lane, and Rahul Ugale. Can’t we all get along? Redesigning protection
storage for modern workloads. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), 2018.

[AHH+01] Eric Anderson, Joseph Hall, Jason D. Hartline, Michael Hobbs, Anna R.
Karlin, Jared Saia, Ram Swaminathan, and John Wilkes. An experimental
study of data migration algorithms. In 5th International Workshop on
Algorithm Engineering (WAE 01), 2001.

[AHK+02] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa
Uysal, and Alistair Veitch. Hippodrome: Running circles around storage
administration. In 1st USENIX Conference on File and Storage Technolo-
gies (FAST 02), 2002.

[BELL09] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long, and Mark Lillib-
ridge. Extreme binning: Scalable, parallel deduplication for chunk-based
file backup. In IEEE International Symposium on Modeling, Analysis Sim-
ulation of Computer and Telecommunication Systems (MASCOTS 09),
2009.

[BLC14] Bharath Balasubramanian, Tian Lan, and Mung Chiang. SAP: Similarity-
aware partitioning for efficient cloud storage. In IEEE Conference on
Computer Communications (INFOCOM 14), 2014.

[CAVL09] Austin T. Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li.
Decentralized deduplication in SAN cluster file systems. In 2009 Confer-
ence on USENIX Annual Technical Conference (USENIX 09), 2009.

37

 

 

 



[clu] Cluster analysis. https://en.wikipedia.org/wiki/Cluster_analysis.
Accessed: 2020-10-24.

[CLZ11] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL: A content-aware
flash translation layer enhancing the lifespan of flash memory based solid
state drives. In 9th USENIX Conference on File and Stroage Technologies
(FAST 11), 2011.

[CPL] CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer. Ac-
cessed: 2018-10-24.

[DDL+11] Wei Dong, Fred Douglis, Kai Li, Hugo Patterson, Sazzala Reddy, and
Philip Shilane. Tradeoffs in scalable data routing for deduplication clus-
ters. In 9th USENIX Conference on File and Stroage Technologies (FAST
11), 2011.

[DDS+17] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony Wong, Shiqin Yan,
and Fabiano Botelho. The logic of physical garbage collection in dedupli-
cating storage. In 15th USENIX Conference on File and Storage Tech-
nologies (FAST 17), 2017.

[Ded22] DedupSearch: Two-Phase deduplication aware keyword search. In 20th
USENIX Conference on File and Storage Technologies (FAST 22), pages
233–246, Santa Clara, CA, February 2022. USENIX Association.

[DGH+09] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Woj-
ciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungure-
anu, and Michal Welnicki. HYDRAstor: A scalable secondary storage. In
7th Conference on File and Storage Technologies (FAST 09), 2009.

[DJS+19] Abhinav Duggal, Fani Jenkins, Philip Shilane, Ramprasad Chinthekindi,
Ritesh Shah, and Mahesh Kamat. Data Domain Cloud Tier: Backup
here, backup there, deduplicated everywhere! In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019.

[DSL10] Biplob Debnath, Sudipta Sengupta, and Jin Li. ChunkStash: Speeding
up inline storage deduplication using flash memory. In 2010 USENIX
Conference on USENIX Annual Technical Conference (USENIX ATC 10),
2010.

[FSL] Traces and snapshots public archive. http://tracer.filesystems.org/. Ac-
cessed: 2018-10-24.

[GE11] Fanglu Guo and Petros Efstathopoulos. Building a high-performance
deduplication system. In 2011 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC 11), 2011.

38

 

 

 

https://en.wikipedia.org/wiki/Cluster_analysis


[Git] Source code of migration algorithms. https://github.com/roei217/
DedupMigration. Accessed: 2022-02-22.

[GNU] GLPK (GNU Linear Programming Kit).
https://www.gnu.org/software/glpk/. Accessed: 2018-10-24.

[GP13] Michael Greenacre and Raul Primicerio. Hierarchical Cluster Analysis.
Fundación BBVA, Bilbao, 2013.

[Gur] The fastest mathematical programming solver. http://www.gurobi.com/.
Accessed: 2018-10-24.

[GWM07] Ron Gabor, Shlomo Weiss, and Avi Mendelson. Fairness enforcement in
switch on event multithreading. 4(3):15–es, September 2007.

[HHS+19] Danny Harnik, Moshik Hershcovitch, Yosef Shatsky, Amir Epstein, and
Ronen Kat. Sketching volume capacities in deduplicated storage. In 17th
USENIX Conference on File and Storage Technologies (FAST 19), 2019.

[HKS16] Danny Harnik, Ety Khaitzin, and Dmitry Sotnikov. Estimating unseen
deduplication-from theory to practice. In 14th Usenix Conference on File
and Storage Technologies (FAST 16), 2016.

[HSX+12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in Win-
dows Azure Storage. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), 2012.

[KKD+22] Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala
Yadgar. The what, the from, and the to: The migration games in dedupli-
cated systems. In 20th USENIX Conference on File and Storage Technolo-
gies (FAST 22), Santa Clara, CA, February 2022. USENIX Association.

[LAW02] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online
data migration with performance guarantees. In 1st USENIX Conference
on File and Storage Technologies (FAST 02), 2002.

[LEB+09] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar,
Greg Trezise, and Peter Camble. Sparse indexing: Large scale, inline
deduplication using sampling and locality. In 7th Conference on File and
Storage Technologies (FAST 09), 2009.

[Lin] Linux Kernel Archives. https://mirrors.edge.kernel.org/pub/
linux/kernel/.

39

 

 

 

https://github.com/roei217/DedupMigration
https://github.com/roei217/DedupMigration
https://mirrors.edge.kernel.org/pub/linux/kernel/
https://mirrors.edge.kernel.org/pub/linux/kernel/


[LLD+14] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wallace.
Migratory compression: Coarse-grained data reordering to improve com-
pressibility. In 12th USENIX Conference on File and Storage Technologies
(FAST 14), 2014.

[lps] Introduction to lp_solve 5.5.2.5. http://lpsolve.sourceforge.net/5.5/. Ac-
cessed: 2018-10-24.

[LSD+14] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone,
and Grant Wallace. Nitro: A capacity-optimized SSD cache for primary
storage. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), 2014.

[Man94] Udi Manber. Finding similar files in a large file system. In USENIX Winter
1994 Technical Conference (WTEC 94), 1994.

[MB11] Dutch T. Meyer and William J. Bolosky. A study of practical deduplica-
tion. In 9th USENIX Conference on File and Stroage Technologies (FAST
11), 2011.

[MCM01] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-
bandwidth network file system. In 18th ACM Symposium on Operating
Systems Principles (SOSP 01), 2001.

[MHS18] Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shinagawa. The quick
migration of file servers. In 11th ACM International Systems and Storage
Conference (SYSTOR 18), 2018.

[NEF+12] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann, Jon
Howell, and Yutaka Suzue. Flat datacenter storage. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12),
2012.

[NK13] P. C. Nagesh and Atish Kathpal. Rangoli: Space management in dedupli-
cation environments. In 6th International Systems and Storage Conference
(SYSTOR 13), 2013.

[NSKY21] Aviv Nachman, Sarai Sheinvald, Ariel Kolikant, and Gala Yadgar. GoSeed:
Optimal seeding plan for deduplicated storage. ACM Trans. Storage,
17(3), August 2021.

[RSG+13] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba
Borthakur, and Kannan Ramchandran. A solution to the network chal-
lenges of data recovery in erasure-coded distributed storage systems: A
study on the Facebook warehouse cluster. In 5th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 13), 2013.

40

 

 

 



[SBGV12] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti.
iDedup: Latency-aware, inline data deduplication for primary storage. In
10th USENIX Conference on File and Storage Technologies (FAST 12),
2012.

[SCJ16] Philip Shilane, Ravi Chitloor, and Uday Kiran Jonnala. 99 deduplication
problems. In 8th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 16), 2016.

[SKM+16] Zhen Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily Tarasov,
Nong Xiao, and Erez Zadok. A long-term user-centric analysis of dedu-
plication patterns. In 32nd Symposium on Mass Storage Systems and
Technologies (MSST 16), 2016.

[SNI] SNIA IOTTA Repository. http://iotta.snia.org/tracetypes/6. Accessed:
2018-10-24.

[SYM] SYMPHONY development home page. https://projects.coin-
or.org/SYMPHONY. Accessed: 2018-10-24.

[TAB11] Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakrishnan. Online mi-
gration for geo-distributed storage systems. In 2011 USENIX Conference
on USENIX Annual Technical Conference (USENIX ATC 11), 2011.

[TMB+12] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuen-
ning, and Erez Zadok. Generating realistic datasets for deduplication
analysis. In 2012 USENIX Annual Technical Conference (USENIX ATC
12), 2012.

[WBMM06] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of replicated data.
In ACM/IEEE Conference on Supercomputing (SC 06), 2006.

[XJF+14] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou.
Ddelta: A deduplication-inspired fast delta compression approach. Per-
formance Evaluation, 79:258 – 272, 2014. Special Issue: Performance 2014.

[XZJ+16] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing
Liu, and Yucheng Zhang. FastCDC: A fast and efficient content-defined
chunking approach for data deduplication. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16), 2016.

[YJTL16] Zhichao Yan, Hong Jiang, Yujuan Tan, and Hao Luo. Deduplicating com-
pressed contents in cloud storage environment. In 8th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 16), 2016.

41

 

 

 



[ZKT08] Eckart Zitzler, Joshua Knowles, and Lothar Thiele. Quality Assessment
of Pareto Set Approximations, pages 373–404. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[ZLP08] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck
in the Data Domain deduplication file system. In 6th USENIX Conference
on File and Storage Technologies (FAST 08), 2008.

42

 

 

 



.(hierarchical clustering) היררכי קיבוץ אלגוריתם בעזרת יעילה מיגרציה תוכנית לבניית דרך מציעים אנו

מתייחס היררכי, קיבוץ בפרט, ביניהם. הדמיון פי על לקבוצות אובייקטים לשיוך מתייחס קיבוץ

האיטרטיבי והתהליך עצמו בפני לקבוצה ממופה אובייקט כל בהתחלה, האובייקטים. בין למרחק

דומים קבצים בקיבוץ מעוניינים אנו ביניהן. המינימלי המרחק עם הקבוצות שתי את שלב בכל מאחד

ואיזון הרשת תעבורת של נמוך לניצול חשיבות מתן תוך במערכת הפיזי המידע כמות את להפחית כדי

תעבורת למחוק, שניתן הפיזי המידע כמות את מחשבים אנו מסתיים, הקיבוץ כשתהליך המערכת.

לא. או טובה מיגרציה בתוכנית מדובר האם לקבוע כדי שהתקבל המערכת ואיזון שנוצלה הרשת

שני אמתיות: מערכות המייצגים גיבויים מקבצי שישה יצרנו האלגוריתם ביצועי של שערוך לצורך

ושני (Microsoft) מייקרוסופט מערכות של גיבויים מקבץ ,(Linux) לינוקס מערכות של גיבויים מקבצי

ניסויים מספר ביצענו .(Homes) ברוק סטוני באוניברסיטת FSL במעבדת סטודנטים של גיבויים מקבצי

האלגוריתם. ביצועי את לנתח מנת על לבעיה שונים פרמטרים עם הגיבויים מקבצי כל את שכללו

אל המיגרציה תוכנית ויעילות החישוב זמן בין תמורות שקלולי מספר יש זו שבשיטה מראות התוצאות

האלגוריתם .(ILP) לינארי תכנון ואלגוריתם (Greedy) החמדן האלגוריתם כמו אחרים אלגוריתמים מול

תיאורטי, באופן שהוא לינארי, לתכנון מהאלגוריתם טובות אף ולעתים זהות תוצאות משיג שלנו

זמן. בפחות אך אופטימלי,

ii

 

 

 



תקציר

מידע. כפילות קיימת כאשר האחסון גודל להפחתת מובילה שיטה היא (deduplication) דדופליקציה

אותו של עותקים מספר לשמור במקום וכו'. קונטיינרים קבצים, בלוקים, על לפעול יכולה זו שיטה

זאת, עקב מיותר. מידע שכפול נמנע ובכך בודד פיזי לעותק הלוגי המידע בין קישור שומרים מידע,

שליפת האשפה, באיסוף לתקורה וגורם שלמות תיקיות או קבצים כמו אובייקטים בין משותף מידע

(הגירה). במיגרציה ואתגרים המערכת על מדויק מידע

קריאה, של הסיבוכיות את ושיפרו לעומק בחנו כבר מסחריות ומערכות קודמים אקדמיים מחקרים

מערכות של ניהול היבטי כמה ישנם עדיין אך דדופליקציה, עם במערכות מידע של ומחיקה כתיבה

נוספות. ועלויות המערכת תוכן תכנון במטמון, שמירה כמו נבחנו שטרם דדופליקציה עם גדולות

עקב שונים שרתים בין ממופים קבצים שבה הכללית המיגרציה לבעיית מתייחסים אנו זו, בעבודה

במערכות מעט לא נחקרה ולאן, להעביר, ובלוקים קבצים אלו השאלה תחזוקה. או המערכת הרחבת

דדופליקציה. עם מערכות של בהקשר נבדקו פשוטים מקרים רק אך דדופליקציה ללא

כאשר היבטים: לכמה להתייחס צריכה אלו ובלוקים קבצים בחירת הקבצים, בין המשותף המידע עקב

לקובץ שמשותפים בלוקים בעוד המקור, משרת להימחק יכולים שלו מהבלוקים חלק מועבר, קובץ

חלק דומה, באופן והיעד. המקור שרתי על משוכפלים להיות צריכים אחרים לקבצים גם אך זה

קיים כבר להיות יכול אחר חלק בעוד היעד, לשרת מועברים להיות יכולים הקובץ אותו של מהבלוקים

בהעברתם. צורך אין ולכן זה בשרת

איזון תוך המערכת גודל את הניתן ככל להקטין היא מטרתנו הכללית, המיגרציה מתוכנית כחלק

מן כחלק העוברת הרשת תעבורת כמות והפחתת במערכת השונים השרתים בין הפיזי המידע כמות

המיגרציה. תהליך

גודל את למזער נדרש מהם באחד מיגרציה. של ספציפיים מקרים בעבר תיארו מחקרים מספר

במחקרים הכללי. המערכת גודל את להקטין מנת על קבצים למחוק נדרש באחר בעוד הכולל, המערכת

(seeding) הזריעה בעיית את לפתור מנת על (ILP) לינארי בתכנון שימוש נעשה שבוצעו יותר מאוחרים

הכללית המיגרציה בעיית את לפתור כדי מכן ולאחר אחר ריק לשרת אחד משרת מועברים קבצים בה

כן. גם כללית מיגרציה תוכנית המוצא חמדן אלגוריתם הוצע גם שעבורה

i

 

 

 



 

 

 



טאוב. ומרלין הנרי שם על המחשב למדעי בפקולטה ידגר, גלה דוקטור של בהנחייתה בוצע המחקר

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המחקר תקופת במהלך

Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar. The what,
the from, and the to: The migration games in deduplicated systems. In 20th USENIX
Conference on File and Storage Technologies (FAST 22), 2022.
Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar. The what,
the from, and the to: The migration games in deduplicated systems. Invited and submitted
to the Special Section on FAST22 in the Transactions on Storage.

תודות

שתרמת, הרעיונות שלי. הציפיות על שעלו והמאמץ הזמן השקעת על ידגר גלה לד"ר להודות ברצוני

הנעים והתהליך שנתת ההשראה שנתת, המצוינת ההדרכה שימוש, בו שנעשה המוחות סיעור תהליך

בתוצאה. משמעותי שינוי עשו שהובלת

נקודת מתן על גם כמו שלו, המצוינים והרעיונות העצות על דוגל לאבינב להודות רוצה גם אני

מהתעשייה. מעניינת מבט

להודות רוצה אני לבסוף, במיוחד. ויוסי מירב להוריי, מודה אני תנאי, ללא ואהבתם תמיכתם על

עשירה. יותר להרבה החוויה את שהפכו והחברות, התמיכה על שלי החברים לכל

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

.(807/20 מספר (מענק ישראל של למדע הקרן ע"י נתמך המחקר

 

 

 



 

 

 



במערכות קיבוץ מבוססת נתונים הגירת
דדופליקציה עם אחסון

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

קיסוס רואי

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2022 יולי חיפה התשפ"ב תמוז

 

 

 



 

 

 



במערכות קיבוץ מבוססת נתונים הגירת
דדופליקציה עם אחסון

קיסוס רואי

 

 

 


