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Abstract

Erasure codes protect data in large scale data centers against multiple con-

current failures. However, in the frequent case of a single node failure, the

amount of data that must be read for recovery can be an order of magnitude

larger than the amount of data lost. Some existing codes successfully reduce

these recovery costs but increase the storage overhead considerably. Others,

which are theoretically optimal, minimize the amount of data required for

recovery, but incur irregular I/O patterns that may actually increase overall

recovery time and cost. Thus, while the theoretical results in this context

continue to improve, many of them are inapplicable to realistic system set-

tings, and their benefit remains theoretical as well.

This gap between theory and practice has been observed in previous

studies that applied theoretically optimal techniques to real systems. In this

paper, we present a novel system-level approach to bridging this gap in the

context of reducing recovery costs. We optimize the sequentiality of the data

read, at the cost of a minor increase in its amount. We use Zigzag—a family

of erasure codes with minimal overhead and optimal recovery—and trade

its theoretical optimality for real performance gains. Our implementation of

Zigzag and its optimizations in Ceph reduces recovery costs with two, three

and four parity nodes, for large and small objects alike. We were able to cut

down recovery time by up to 28% compared to that of Reed-Solomon, and

to reduce the amount of data read and transferred by 18% to 39%.
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Abbreviations and Notations

n — Code length

k — Data blocks

r — Redundancy blocks

rr — Rebuilding ratio - the portion of the surviving nodes’ data that

must be read during recovery

m — Each data and parity block is composed of a few elements, the

number of elements in each block is m

s — The duplication factor of the code, k
k′ where k′ is of the original

zigzag code

v — The number of virtual blocks logically filled with zeroes

k′ — number of blocks in each duplicated code instance

MDS — Minimum distance seperable - a MDS code with r parity blocks

can recover from r erasures

MTTDL — Mean time to data loss, the time between two failures in the sys-

tem, repair time must be shorter

HDD — Hard disk drive, a magnetic storage device

G — A generator matrix of an array-code, such as zigzag

OSD — Object storage device - stores a single block of data or parity

elements for objects in corresponding placement groups

PG — A placement group, logical collection of objects that are replicated

across the same set of OSDs

GF — Galois finite field

LRC — Local Reconstruction Codes

2
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Chapter 1

Introduction

1.1 Disk Failures

In modern data centers that host hundreds to tens of thousands of nodes,

node failures are the norm, and correlated failures are not uncommon. As

a result, large scale storage systems are configured with high degrees of

redundancy, storing three replicas of each data object, or dedicating parity

nodes to each data array to withstand up to four node failures. The frequent

node failures trigger recovery processes that impose significant load on the

system. These cause excess disk I/O and network transfer to server up-time

and respective power and cooling costs.

A recent study on Facebook’s data centers showed that recovery in

erasure-coded arrays incurred an order of 180TB of data transfer between

racks each day [26]. Thus, significant research effort has gone into reducing

recovery costs in such systems. The above study showed that 98.08% of

failure events constitute exactly one unavailable node, and only 1.87% of

failure events constitute two unavailable nodes. Indeed, although erasure-

coded systems are designed to withstand several concurrent failures, much

of the related effort has focused on optimizing recovery from failures of a

single node.

3

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Figure 1.1: Recovery of a single failed node in an (n,k) erasure-coded system.
With the widely used Reed-Solomon codes (a), k entire nodes must be read. With
Zigzag codes with r parities (b), the data can be recovered using 1

r of each surviving
node.

1.2 Resilience Approaches

For example, Local Reconstruction Codes (LRC) support recovery by read-

ing only a small subset of the surviving nodes [9, 15, 16, 30, 33], but they

increase the storage overhead of the system. Other codes reduce the amount

of data transferred during recovery, but still require reading most of the sur-

viving data from disk [7, 27, 24].

Several approaches have been suggested for reducing the amount of data

read from each node in existing codes or special variations of the read

data [12, 17, 25]. The latter result in highly irregular I/O patterns and

are thus useful for systems storing extremely large objects. For example, in

Hitchhiker code, presented in [25] in order to utilize small objects the code

requires to utilize a strided read pattern — a pattern in which we read non

sequentially by taking constant sized steps between segments of the read

data. The example will be further detailed in Chapter 6.

A promising approach involves codes that minimize the rebuilding ra-

tio—the portion of the surviving nodes’ data that must be read during

recovery—and achieve the lower theoretical bound on this ratio via explicit

constructions [10, 18, 40]. However, these codes are characterized by high

internal fragmentation: encoded objects are composed of hundreds of ele-

ments. The low rebuilding ratio is achieved by reading only a subset of the

elements stored on each surviving node, but these elements are necessarily

non-contiguous on the low level storage device.

Hard disks are the dominating storage technology in most data centers,

4
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especially in storage pools that store infrequently accessed (cold) data and

provide data durability and redundancy with erasure codes. This is due to

the high cost per GB that SSDs incur [2]. Nonsequential I/O accesses such

as those described above can be detrimental to hard disk performance. Even

strided accesses, which read contiguous data units but skip some of them

at regular intervals, significantly reduce I/O throughput. A recent study

demonstrated that the cost of irregular I/O accesses may cancel the benefit

from reducing the rebuilding ratio, and may even increase the amount of

data read, as well as the overall recovery time [20].

1.3 Our Contribution

In this work, we show how to resolve this tension between theory and prac-

tice, to achieve near-optimal recovery in real system settings. We use Zigzag

codes that have both optimal storage overhead and an optimal rebuilding

ratio [34], along with an inherent flexibility that trades the rebuilding ratio

for I/O sequentiality. We describe a set of optimizations made possible by

this flexibility, and show how a small increase in the code’s theoretical re-

building ratio can significantly reduce recovery costs in a real system. Some

of these optimizations can be applied to other codes as well.

The novelty of our optimizations lies in their underlying objective: while

previous approaches aim to reduce the amount of data required for recovery,

our optimizations are designed to increase the sequentiality of this data,

possibly at the cost of reading more of it. We employ code duplication, a

technique for extending a stripe to span more nodes without increasing its

internal fragmentation, at the cost of increasing the amount of data that

must be read during recovery [34]. We combine duplication with the notion

of virtual nodes: nodes that do not store any data but increase the code’s

parameter space and allow system designers to choose the construction that

best suits their goals. The concept is known in the coding literature as code-

puncturing. Finally, we exploit the generic design of Zigzag codes to choose

code constructions as well as recovery schemes with the most contiguous

I/O accesses.

The second set of optimizations is orthogonal to the specific code con-

struction, and targets the low-level disk accesses. First, we add virtual

padding at the end of each object so that the fragments that are read for

5
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recovery are aligned to 4KB sector boundaries. Second, we examine two

approaches for coalescing disk reads, possibly reducing the amount of I/Os

issued at the cost of increasing the amount of data read.

We implement Zigzag with the mentioned optimizations in Ceph — a

highly scalable, open-source storage system that supports both replication

and erasure coding [36, 38] — and compare it to Reed-Solomon — the

system’s default erasure code. In addition, we include a detailed analysis of

how Zigzag compares with LRC in the settings we chose for our experiments,

using the basic Pyramid construction [15].

Our evaluation of Zigzag includes populating the cluster with data, fol-

lowed by a node failure which triggers the system’s recovery process. We

measure and report the CPU usage, network transfers and disk accesses

during each such process. We do this for a variety of configurations using

each of our optimizations. The evaluation shows that by reducing internal

fragmentation, Zigzag codes can significantly reduce the amount of data

read and transferred during recovery (by 18% to 39%), as well as the overall

recovery time (by up to 28%). Unlike previous approaches, Zigzag achieves

similar reductions for all common array configurations, as well as for small

(4MB) objects.

6
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Chapter 2

Background

2.1 Erasure Codes in Theory

In an (n,k) erasure code, k data blocks are encoded into a stripe of n code

blocks. The code is systematic if the data blocks are included in the n code

blocks. In this case, the remaining r = n−k blocks in the stripe are referred

to as parity blocks. Coding equations define the computation of the parity

blocks. In linear codes, which are the most common, each parity block is a

linear combination of some or all of the data blocks, where the coefficients

of the equation are picked from some finite field F. The data blocks that

appear in a parity block’s coding equations make up its dependency set. For

a given (n,k) pair, a code construction is defined by the coding equations

for all r = n− k parity blocks.

An (n,k) erasure code is called MDS (maximum distance separable) if

it can recover any block as long as up to r blocks are unavailable, where

r=n-k. MDS codes are desirable because they can recover the maximum

number of unavailable blocks given their storage overhead.

In scalar codes, the coding equations are defined over a set of entire

blocks, as seen in Figure 1.1(a). In array codes, each parity block is calcu-

lated from a set of sub-blocks, which we refer to as elements. When a stripe

is viewed as an array, each block represents a column, and the number of

elements in a block is the number of rows in the array. For example, the

array code in Figure 1.1(b) has n = 4 code blocks, among them k = 2 are

data blocks, and r = 2 are parity blocks. Each block consists of 2 rows. Ar-

ray codes were initially motivated by the goal of avoiding computationally

7
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expensive finite field operations during decoding and encoding, replacing

them with simple XOR operations.

When a block is unavailable, it can be recovered using the content of some

or all of the remaining blocks in its stripe. Thus, we distinguish between

two related operations: a read requests a systematic data block and does not

require additional content or computation, while a degraded read requests

an unavailable data block which is decoded from the remaining blocks in the

stripe. Note that in array codes, while coding equations refer to elements,

failures affect blocks as a whole.

When a block is permanently unavailable due to reasons we discuss be-

low, it is recovered in a similar manner to a degraded read operation, and its

content is stored to allow future (non-degraded) reads. This process is called

recovery or rebuild, and is usually applied to a large number of blocks, from

different stripes, that were stored on a failed storage device. The rebuilding

ratio is the fraction of elements required for recovery of a single block, out

of the surviving elements in the stripe. For example, the rebuilding ratio

of the code in Figure 1.1(a) is k
n−1 . The theoretical lower bound on the

rebuilding ratio for an (n,k) MDS code was shown to be 1
r [7]. Several re-

cent studies show explicit codes that achieve this ratio for rebuilding data

blocks, while the recovery of parity blocks required reading k whole surviv-

ing blocks [10, 28, 34]. We follow their convention throughout this paper

and refer to the rebuilding ratio of data blocks. We discuss recent results

for efficient recovery of parity blocks in Chapter 6.

2.2 Erasure Codes in Practice

Modern data centers typically consist of hundreds to tens of thousands

of storage servers (nodes), each serving thousands of IOPS over 8Gbps to

40Gbps network links [26, 32]. Data is stored as objects, consisting of one

or more stripes according to their size and system parameters. The data

and parity blocks of each stripe are stored on separate storage nodes, and

different objects are striped across different sets of nodes for load balancing.

In such complex settings, node failures are the norm. A failed node does

not respond to periodical “heartbeat” probes, and is therefore incapable

of serving read or write requests. It is customary to distinguish between

permanent failures and transient ones. Permanent failures require the entire

8
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node or its storage drives to be replaced, due to hardware faults or planned

upgrades. A transient failure is a temporary one, caused, for example, by

power or network outages, system reboot, or process restarts [11, 16].

Modern storage systems employ several approaches to ensure reliabil-

ity when such failures occur. For instance, in Microsoft Azure, [3], every

node belongs to a separate fault domain which has redundant networking

and power. In addition, data resides in different data-centers in order to

withstand large scale disasters.

In this context, data requested from a failed node must be served as

a degraded read, and permanent node failures require recovery of all the

data they were storing. Most systems apply a threshold, typically 15 min-

utes, after which a non-responsive node is considered permanently failed and

recovery is triggered [11, 26].

The motivation to postpone recovery is the high cost it incurs: the sur-

viving blocks in each stripe must be read from several nodes, and transferred

to the healthy node responsible for decoding and storing the lost block.

These reads interfere with the ability of the nodes to serve application re-

quests by occupying precious network and storage bandwidth—recovery may

occupy as much as 10%-20% of the data center’s bandwidth [30]. Thus, re-

covery jobs are often scheduled as background processes with low priority

and bandwidth limits. For example, in Ceph, the priority of client opera-

tions is set to 63, whereas that of the recovery operations is set to 10 [4]. In

turn, it may take several hours to fully recover a failed node.

The tradeoff between recovery cost and storage overhead is straightfor-

ward: for a given reliability requirement, i.e., a fixed number of parity blocks

(r), increasing the stripe size (k) reduces the storage overhead but increases

the amount of data required for recovery, and thus increases recovery cost.1

Replication is one example of this tradeoff: where k = 1 and r is the

number of replicas, recovery of a replicated node requires reading one of

its replicas. This is clearly the minimum amount of data required, and is

also exactly 1
r of the surviving blocks in the stripe. However, due to its

high overhead, the use of replication is usually limited to hot data, while

1Increasing the stripe size while fixing the number of parity blocks also reduces the
mean time to data loss (MTTDL). In the scope of this work we assume that n and k were
chosen according to external considerations, and focus on the recovery performance of the
system.
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Figure 2.1: (5,3) Zigzag code construction. pi is the simple parity element of row
i, and zi is the i’th element of the Zigzag parity.

most of the data center’s stripes are encoded with k > 1. Typical values of

(n,k) erasure codes are (14,10) in Facebook’s data centers [26, 30], (16,12)

in Windows Azure [16] and (9,6) in Google Colossus FS [39].

The number of parity nodes is determined accoding to the stripe’s target

MTTF — mean time to failure which is the average time that a disk is

expected to function before it fails.

2.3 Zigzag Codes

Zigzag is a family of systematic MDS array codes, which can be constructed

for any (n,k) combination and achieve the optimal rebuilding ratio. The

explicit construction of Zigzag codes, as well as the proofs of their correctness

and optimality, are detailed in previous theoretical work [34]. We focus here

on an intuitive explanation of their structure and properties relevant to their

application to real systems.

An (n,k) Zigzag code with r parities, r = n − k, has m = rk−1 rows.

The first parity column (block) in any Zigzag code is simple parity. In other

words, each element is a XOR of all the data elements in its row. The

remaining r−1 columns are called Zigzag parities. Each element in a Zigzag

parity is a linear combination of k data elements from different rows, one

from each column. The coefficients in the coding equations ensure the MDS

property, i.e., that up to r lost blocks can be recovered. The combination of

dependency sets and coefficients ensures that the code is MDS and that the

recovery of one lost data block requires exactly m×(n−1)
r elements (mr from

each of the n−1 surviving nodes), which yields the optimal rebuilding ratio
1
r . Each such combination is a Zigzag construction.
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Figure 2.2: Recovery of a single failed node in the (5,3) code in Figure 2.1. Data
elements are numbered according to the Zigzag parity whose dependency set they
belong to. In each scenario, the failed node is crossed out, and the shaded elements
are the ones read for its recovery.

Figure 1.1(b) shows an example of a (4,2) Zigzag code, where the coding

equations for the first and second Zigzag parity elements are a + 2d and

c + b, respectively. When the first (leftmost) data block is lost, it can be

recovered by reading the three shaded elements out of the six surviving ones.

Figure 2.1 shows an example of a (5,3) Zigzag code and the coding equations

for the simple parity elements (pi) and Zigzag parity elements (zi). We note

that adding a data block to the stripe doubles the number of rows in the

array. Figure 2.2 shows the recovery scenarios when each of the data blocks

fails, using the equations of the shaded parity elements. They all require

eight out of the sixteen surviving elements.

The construction in Figure 2.1 exemplifies the inherent limitation of

Zigzag codes, and in fact, of array codes in general. While recovery of a

data node requires a limited portion of the surviving elements, reading these

elements entails nonsequential I/O access in the storage nodes. Although the

I/O access is not completely random, and does not require additional arm

movements, it does incur excessive rotational delay. Consider, for example,

rebuilding a permanently failed node storing blocks from multiple objects

according to the recovery scenario in Figure 2.2(c). If the size of each element

is 4KB, the standard HDD sector size, reading half of the elements in each

surviving node would require the same time as reading all the data in the

node. As a matter of fact, this would also be the case for the recovery

scenarios in Figures 2.2(a) and (b). As long as the requested contiguous

elements do not fill an entire track, the resulting rotational delay would

cancel the benefit from reducing the rebuilding ratio.

The problem of nonsequential access has been identified in several previ-

ous studies [17, 20, 25]. Since the element size equals the object size divided
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Figure 2.3: The number of rows (rk−1) and the corresponding object sizes (rk−1×
k) required for ensuring that elements are 1MB each. Both measures increase
exponentially with k.

by the number of elements, the problem was addressed thus far by applying

array codes to extremely large objects, where block sizes range from 64MB

to 256MB [17, 25]. For smaller objects, the network bandwidth corresponds

to the rebuilding ratio, but storage bandwidth experiences only a minor

reduction, and sometimes even increases [20].

This problem is exacerbated in Zigzag codes, where the number of rows

is exponential in the number of columns. Figure 2.3 plots the number of

rows required for representative values of k and r, and the corresponding

object size required for ensuring that elements are 1MB in size (an optimistic

estimate of HDD track size). This is a frustrating example of the tension

between theory and practice: a code that is optimal in theory leads to very

high recovery costs in practice. Fortunately, several optimizations of Zigzag

codes, which we discuss in the following section, enable us to resolve this

tension and reduce recovery cost considerably.

2.4 Local Reconstruction Codes (LRC)

Local reconstruction codes add parity nodes to an array, so that one node

can be recovered by accessing only a small subset of the nodes in the array.

This is a popular approach to reducing recovery costs, examples of which

include Product [9] and Pyramid codes [15], LRC, which is used in Win-

dows Azure [16], HACFS [39], Xorbas [30], and optimal-LRC [33]. We now

summarize their advantages and limitations.

These codes are non-MDS: each of the additional local parity nodes,
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(a) A (8, 6) Reed-Solomon (b) A (8, 6) Basic pyramid code

Figure 2.4: A basic Pyramid code constructed from a (8, 6) Reed-Solomon code.
It has 6 data blocks (d1, . . . , d6), two local parities and a global parity. The local
parity block p1,1 is a linear combination of d1, d2, d3 and the local parity block p1,2
is a linear combination of d4, d5, d6. In addition, p2 is a global parity block, a linear
combination of all data blocks. In case d1 fails, we can recover it by reading 3
blocks: d2, d3 and p1,1.

presented in Figure 2.4(b), are computed based on a subset of the data

nodes, so they do not protect against arbitrary node failures. Thus, these

codes introduce a trade-off between storage efficiency, which is optimal in

Zigzag, and repair cost. Like ours, this trade-off can be viewed as bridging

the gap between theoretical optimality and performance in practice.

On the other hand, these codes are scalar and read entire blocks during

recovery. Thus, they exhibit better sequentiality than Zigzag in most setups.

By accessing only a limited number of nodes, they limit the recovery load

to a restricted portion of the system. At the same time, if the number of

nodes participating in the recovery is too small, the reduced parallelism may

increase recovery time. This is usually not a problem in large scale systems

that stripe objects across hundreds of nodes. Indeed, locally repairable

codes have been applied to very large scale systems. In other systems, the

advantages of Zigzag may be more pronounced.

In addition to comparing Zigzag to Reed-Solomon codes, we add a de-

tailed analysis of how Zigzag compares with basic Pyramid codes, from the

Local Reconstruction Codes (LRC) family [15]. The basic Pyramid codes

can be simply derived from any existing codes, and thus all known efficient

encoding/decoding techniques directly apply [15].

In order to fully understand Section 5.3, we present a common notation

of basic Pyramid codes, from the LRC family. Let an object consist of n

blocks, where k blocks are data blocks, and the other r = n − k blocks

are redundant blocks. Use di (i = 1, . . . , k) to denote data blocks and pj
(j = 1 . . . , r) to denote the redundant blocks.

We construct an example which derives from a (8, 6) MDS code, specifi-
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cally Reed-Solomon. Let the 6 data blocks be separated into two equal size

groups S1 = d1, d2, d3 and S2 = d4, d5, d6. A single redundant block, say

c1, splits into two, where the rest of the parity blocks stay unchanged, and

are now called global redundant blocks. The global redundant blocks are

computed from all data blocks. Then, a new redundant block is computed

for group S1, which is denoted as a local redundant block p1,1. The com-

putation is done as if computing p1 in the original MDS code, except for

setting all the data blocks in S2 to 0. Similarly, local redundant block p1,2 is

computed for S2. Clearly, local redundant blocks are only affected by data

blocks in their corresponding groups, and not by other groups at all. This

yields a (8, 6) basic Pyramid code [15], which is described in Figure 2.4(b).

We use the basic Pyramid code construction because it can easily match

each of our chosen Reed-Solomon configurations, by splitting a single par-

ity block into two local parities, and since it can be easily configured in

Ceph. We will further explain the trade-offs in choosing this construction

in Section 5.3.
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Chapter 3

Our Approach

3.1 Reducing the Number of Elements

Our optimizations for implementing Zigzag codes are designed to make re-

covery reads as sequential as possible. This is done primarily by reducing

the number of elements in a stripe, which is equivalent to reducing the num-

ber of rows. Whenever possible, we also reduce the number of elements (or

rows) that should be “skipped” between those elements that are required

for recovery.

3.1.1 Code Duplication

An appealing property of Zigzag codes is that a (k′+r,k′) Zigzag code can be

duplicated to form a (k+ r,k) array, so that k = s× k′ for some duplication

factor s. The number of rows in the duplicated code is m = rk
′−1, as in

Figure 3.1: This (8,6) Zigzag construction is a 2-duplication of the code in Fig-
ure 2.1. Data elements are numbered according to the Zigzag parity whose depen-
dency set they belong to. The shaded elements are those required for the recovery
of the second data block. The fifth block is the twin of the failed one, and is thus
read entirely during recovery.
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the original (k′ + r,k′) code. An s-duplication consists of s sets of k′ data
columns each. We refer to each such set as a code instance, where blocks (or

elements) in the same position in different instances are twins, and belong

to the same dependency sets. For example, Figure 3.1 shows the (8,6) code

that is a 2-duplication of the (5,3) code in Figure 2.1. The fourth node is

a twin of the first, the dependency set of p0 is the entire first row, and the

dependency set of z0 are all the elements marked with 0. Note that only

the element positions in the coding equations are duplicated, not the data

itself.

The coefficients in a duplicated code are chosen from a larger finite field

than those of the original code, to preserve its MDS property, as discussed

in Section 3.1.4. Recovery of a single failed block in a duplicated code re-

quires 1
r of every block, and the remaining elements in the s−1 twins of the

failed block. For example, the shaded elements in Figure 3.1 are required

for the recovery of the second block in the duplicated (8,6) code. Thus, the

reduction in the number of rows comes at the cost of increased rebuilding

ratio. In this example, recovery requires 16 of 28 surviving elements, corre-

sponding to a rebuilding ratio of 0.57. The rebuilding ratio in the general

case is 1
r + ( r−1

r )( s−1
sk′+r−1).

This increase in the rebuilding ratio means that duplicated codes are

not theoretically optimal. Thus, they have not received much attention

since they were suggested in the original Zigzag work [34]. However, our

evaluation shows that duplicated constructions reduce recovery cost in many

configurations in which the original code is not applicable at all.

3.1.2 Virtual Nodes

An (n,k) erasure code can be implemented as an s-duplication of a smaller

code only if s divides k. This limits the applicability of duplication and

the available points on the tradeoff between the number of rows and the

rebuilding ratio. In order to fully exploit the design space offered by du-

plication, we utilize the concept of virtual nodes [1]. A virtual node does

not exist in the system and is treated by the encoding and decoding mecha-

nisms as storing all zeroes. Whenever a computation requires an element in

a virtual node, this element is replaced by a buffer full of zeroes. Figure 3.2

plots the number of rows resulting from implementing the same (n,k) code
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Figure 3.2: Number of rows of (n,k) Zigzag codes implemented as s-
duplication, when s ∈ {1, 2, 3}. The marked data points correspond to
constructions that do not require virtual nodes.

as an s-duplication for several values of s, with and without virtual nodes.

For example, a (7,5) Zigzag array that would normally require 16 rows, can

be implemented as the (8,6) construction in Figure 3.1, replacing the sixth

data node with a virtual one. Interestingly, the average rebuilding ratio of

an (n,k) code with virtual nodes is slightly (up to 7%) smaller than that of

an (n,k) code where all the nodes exist, because the virtual nodes are never

read. We discuss the applicability of code duplication and virtual nodes to

other array codes in Chapter 6.

3.1.3 Effective Rebuilding Ratio

The theoretical rebuilding ratio takes into account only failures of data

nodes, and assumes that all n nodes physically exist in the system. Thus,

it does not accurately predict the minimal amount of data that must be

read, on average, in order to recover one arbitrary failed node. We define

the effective rebuilding ratio as the number of physical elements read as a

fraction of the physical elements in the surviving nodes in the array. We

denote the number of virtual nodes as v, the number of code blocks which

store physical data as k (so that s divides k+v), and the number of blocks in

each duplicated code instance as k′, and present an expression to accurately

predict the mentioned effective rebuilding ratio.

We consider the following block repair scenarios. In scenario (a), a parity

node fails, and we need to read k ·m elements to recover the failed node by

recomputing the parity. The probability of this scenario is r
k+r .
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(a) The last twin in this example is
virtual.

(b) In this example the failed block
has no last twins.

Figure 3.3: Recovery of a (8, 6) Zigzag code with duplication factor s = 3. Notice
that in figure (a) the last twin is not read while in figure (b) it is read.

In scenario (b), a data node with a virtual twin fails, and we need to

read (s − 2) · m elements from the twin blocks, consisting of all the twins

but the failed and virtual ones, plus m
r elements from the (k + r − (s− 1))

remaining non virtual nodes which we haven’t considered. There are k+r−1

remaining non-virtual nodes, and we already considered s− 2 of them. The

probability of this scenario is v·s
k+r .

In scenario (c), a data node corresponding to a block with only physical

twins fails, and we need to read (s− 1) ·m elements from all the twin blocks

but the failed node, plus m
r elements from the (k + r − s) remaining non

virtual nodes which we haven’t considered. There are k + r − 1 remaining

non-virtual nodes, and we already considered s−1 of them. The probability

of this scenario is (k′−v)·s
k+r .

The effective rebuilding ratio, rre, considers only data disks, so we treat

only scenarios (b) and (c). It is computed as follows. Figure 3.3a explains

visually how the rebuilding ratio in (b)-type blocks is calculated, and Fig-

ure 3.3b explains the same for (c)-type blocks.

rre =

⎡
⎢⎢⎢⎢⎢⎣

v · s
k

· m
r

· (k + r − (s− 1))
︸ ︷︷ ︸

(b)

+
(k′ − v) · s

k
· m
r

· (k + r − s)
︸ ︷︷ ︸

(c)

⎤
⎥⎥⎥⎥⎥⎦
/m (3.1)

3.1.4 Recovery Coefficients

The general construction of Zigzag codes defines the dependency sets of

the parity elements, but in some cases, does not specify the coefficients of

the data elements in the coding equations. The optimality of Zigzag codes
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relies on a proof of the existence of suitable coefficients, but their values

are not given for all the combinations used in our evaluation. Specifically,

the coefficients are known for r = 2 and any s, and for r = 3 with s = 1

[34]. In order to implement Zigzag with its optimizations we must obtain

the proper coefficients. Coefficients are usually chosen from the smallest

possible finite field in order to simplify and accelerate the encoding and

recovery procedures [22].

A trivial approach to solving the issue for r = 3 is to duplicate the

coefficient values together with the element positions in the dependency

sets. However, in this case, each of the twins will be linearly dependent.

This results in losing the MDS property. Therefore we have to choose the

coefficients from a field larger than the one proposed for r = 3 and s = 1.

In order to compute the parity disks in the Zigzag code, we prefer to use

a field of size 256, denoted GF (28) since it fits well to commodity hardware

instructions [22]. In 4 configurations: 〈k = 8, r = 4, s = 2〉, 〈k = 10, r =

4, s = 3〉, 〈k = 10, r = 3, s = 2〉, 〈k = 6, r = 3, s = 1〉, we use GF (216)

instead, which will be further explained below. Tamo et al. proved that

in Zigzag code with r = 2 and different duplication factors s, the field size

from which we choose coefficients can be s+1 which is small enough for all

of our configurations. For r = 3, Tamo at al. provide coefficients for the

basic construction, in which s = 1 [34].

For the rest of our configurations, we must exhaustively search all possi-

ble coefficient combinations and check whether they result in an MDS code.

In other words, in order to ensure that the resulting construction allows re-

covery from a failure of any r nodes, the linear equation system that is solved

in the decoding procedure must be linearly independent. This property was

verified using a simple Matlab program, by exhaustively searching the co-

efficients space until we reach a valid set. In all but the 4 configurations

mentioned in the last paragraph, we found valid coefficients over GF (28).

However, in the mentioned configurations, we found valid coefficients over

GF (216). This doesn’t appear to be a problem since the performance of

calculations over GF (216) is approximately the same as over GF (28) [22].
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3.2 Making I/Os More Sequential

In order to quantify the sequentiality of the recovery I/Os, we define the read

distance as the inclusive distance (in elements) between the first and last

elements read in a block in order to recover the failed block. For example,

in the (6, 4) code in Figure 3.4(a), when the leftmost data node fails, the

read distance is 7 in each of the data nodes and in the row parity. Our

first objective is to minimize the average read distance — the average read

distance when considering all possible single-node failures.

Our second objective is to minimize the number of I/O requests issued

to the hard disk in each node. A reduction in the number of requests is

expected to reduce recovery time by saving host overheads and by providing

the disk scheduler with more reordering opportunities.

3.2.1 Optimal Dependency Sets

We optimize disk access by choosing, for each recovery scenario, to read the

elements which result in the most sequential I/O pattern. For example, the

shaded elements in Figure 2.2(a) can be read more efficiently than the non-

shaded ones. We consider the read distance in each surviving data node, and

choose the elements which results in the shortest distance for the recovery

of the failed node (we disregard the distance of the Zigzag parity elements).

Note that the distance may be the same for all parts (as in Figures 2.2(b)

and 2.2(c)), and that the optimal part can be easily identified in advance

for every recovery scenario.

3.2.2 Optimal Constructions

Zigzag codes enjoy another degree of freedom that does not apply to all

erasure codes. They define certain constraints on the choice of coding de-

pendencies and equations, but for every (n, k) pair there are many possible

constructions that share the MDS and optimal recovery properties. Specif-

ically, for m > 4, some choices of dependency sets result in partitions with

shorter average read distances than others. For example, consider the (6,4)

code in Figure 3.4 when the first data node fails. With the basic construc-

tion (a) the distance between the first and last elements read in each of

the surviving data nodes is 7, while in the alternative construction (b) it is
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Figure 3.4: Basic (a) and alternative (b) constructions for a (6,4) Zigzag code.
When the first node fails, the distance between the elements read in each data
node is reduced from 7 in the basic construction to 5 in the alternative (optimal)
one.

5. The alternative construction reduces the distance for all but one failure

scenario. The optimal code construction in this context is the one with the

shortest average distance during recovery. The basic construction (as it ap-

pears in the literature [34]) is optimal for m ≤ 4. For m > 4, we find the

optimal alternative construction as follows.

r m Basic Optimal

2 8 6 5
3 9 5 3.67
4 16 9 5.67

Table 3.1: Basic/optimal distance.

Alternative constructions can be viewed as a permutation of the rows

of the data and row-parity blocks in the array, although no data is actu-

ally shifted—they are implemented by adjusting the dependency sets. The

optimal construction for a given (n,k) pair can be found by calculating the

average distance of each permutation exhaustively. We were able to find

the optimal constructions for eight, nine, and sixteen rows in a matter of

seconds (see Table 3.1). For more rows, however, examining all possible con-

structions requires hundreds to thousands of compute hours. In addition,

our initial search indicated that most of the optimal constructions improve

over the basic ones, and there are simple thumb rules to predict that. We

examine the benefit from optimal constructions in Section 5.2.7.
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(a) (b) (c)

Figure 3.5: An example of näıve (a), conservative (b) and aggressive (c) I/O
request approaches in a (6, 2) Zigzag code

Optimal constructions only replace the order of rows in the code’s gen-

erator matrix, therefore they don’t affect the MDS property of Zigzag.

In our search for optimal constructions we do not attempt to optimize

the read distance in the Zigzag parity blocks. Permuting these rows as well

would have significantly increased the complexity of our implementation,

and we expect the additional benefit to be negligible.

3.2.3 Aligning Elements to Sector Boundaries

When the data requested from the hard disk is not aligned to 4KB-sector

boundaries, it is aligned by the disk scheduler and additional data is read.

This may result in a significant amount of excessive reads, and mask the

benefit of the small rebuilding ratio [20]. In order to ensure that all our

elements are aligned to sector boundaries, we increase the object size by

padding. Padding may result in a significant increase in object size. For

example, when the element size is originally 5KB, with k = 10, r = 3, s = 2,

padding increases the object size by 60%. This is a huge burden on disk and

network storing a large amount of zeroes and may decrease performance

significantly. Therefore, we treat the resulting “zero elements” as logical

zeroes, not storing nor sending them over the network. In this way we avoid

unnecessary disk reads, network transmissions and recovery time.
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Figure 3.6: (a) Striping in block granularity using the (4,2) Zigzag construction
in Figure 1.1(b). (b) Optimized block assignment in the (6,4) Zigzag construction
that is a 2-duplication of the (4,2) code in (a).

3.2.4 Coalescing Consecutive Elements

The näıve approach for reading elements from disk is sending a single I/O

request per element. In order to minimize the number of I/O requests issued

to the hard disk, we coalesce consecutive elements into a single I/O request

by using one of two approaches.

In the conservative approach, we read neighboring elements in a single

I/O request. Each group of consecutive elements required is read by a

separate I/O request. For example, in the (6, 4) code in Figure 3.5(b),

when the leftmost node fails, we issue 3 disk I/Os instead of the 4 issued by

the näıve approach.

In the aggressive approach, we read all the required elements within a

group in a single I/O request. This minimizes the number of I/O requests,

but results in possibly reading more elements that are unnecessary for re-

covery. For example, in Figure 3.5 5 elements are required for the recovery

of the leftmost node, but we aggressively read 7 elements in a single I/O

request.

3.3 Degraded Reads and Update Penalty

Erasure codes allow a degree of freedom in the way an object’s data can be

split into elements. For example, a and b in Figure 1.1(b) are contiguous

data elements that were striped in element granularity and assigned to nodes

in round-robin order. In our design, we stripe objects in the granularity of

blocks, rather than elements. This allows read requests that are smaller than

an entire object to be served by the minimal number of nodes. Figure 3.6(a)

shows the same data from Figure 1.1(b) striped in block granularity. This

optimization can be applied to any array code.

In addition, we replace the standard round-robin layout and assign con-
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Figure 3.7: An example of a (6, 2) Zigzag code with a layout optimized for low
update penalty. Both elements a and b belong to the dependency sets of parity
elements p0 and z0.

tiguous blocks to twin columns. In many cases, this reduces the number

of extra elements required for completing a degraded read request, because

the twins of an unavailable block are read anyway. Consider, for example,

the (6,4) code in Figure 3.6(b), which is a 2-duplication of the code in Fig-

ure 3.6(a), and assume that the first node is unavailable. If the application

requests the first two data blocks, elements c and d, which are part of the

request, can be used “for free” in the recovery of elements a and b. While

the benefit from data striping and assignment depends on the distribution

of read request sizes, note that they never increase the number of required

elements or nodes accessed during recovery.

An interesting property of the mentioned layout is that in addition to

improving degraded reads, it can also improve the update penalty — the

number of elements that are physically updated due to a logical update of a

single element. For the following optimization we rely on the row-ordered el-

ements layout described in Figure 3.7, and consider partial object sequential

writes. As seen in the figure, updating a single element in an object costs

r additional element updates, one for each parity. In the proposed layout,

we can update s elements at the cost of one, since twin elements depend

on the same parity elements. Therefore update penalty which appears to

be a serious problem in array-codes is partially solved using the duplication

optimization.

3.4 Recovery by Simple Parity

With hard disks as physical storage, increasing the amount of data read

can increase efficiency if this data is read sequentially. Thus, there are two

cases in which recovery by the simple parity elements is more efficient than
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recovery by both simple and Zigzag parities. In the first case, the client

reads and entire object. All surviving data blocks are read as part of the

client’s request, and the unavailable block can be recovered by additionally

reading the entire simple parity block. This is more efficient than reading 1
r

of each of the parity blocks since the recovery equations are over a binary

field, on which the computation is faster.

In the second case, the client requests only c elements from the unavail-

able node, c < m. If c ≤ m
r , recovery can be accomplished by reading c data

rows and their simple parity elements, which results in less than the optimal

rebuilding ratio. As a matter of fact, as long as c is strictly smaller than

the distance of the optimal recovery partition, recovery by simple parity will

result in more efficient I/O than recovery by simple and Zigzag parities.
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Chapter 4

Implementation

4.1 Erasure Codes in Ceph

Ceph is a distributed storage system whose performance and scalability build

on unreliable, intelligent object storage devices (OSDs). A Ceph cluster is

composed of one or more metadata servers (MDS), one or more monitors

(MON), and up to hundreds of thousands of OSDs [36]. Ceph’s backend

storage is RADOS, which is responsible for object placement, failure detec-

tion, and recovery [38]. OSDs are organized into pools—the storage units

exposed to the clients via a block device, file system, or object store interface.

4.1.1 Placement Group Roles

Within a pool, RADOS maps objects to placement groups—logical collec-

tions of objects that are replicated across the same set of OSDs. An (n,k)

erasure-coded pool will have n OSDs in each placement group. Load balanc-

ing and parallel I/O access are achieved by defining several placement groups

within each pool, so that each OSD belongs to several groups. RADOS

uses CRUSH, a pseudo-random mapping function of objects to placement

groups [37]. Within each placement group, the primary OSD is responsible

for serving client read/write requests, possibly with the help of the other

(secondary) OSDs in the group. When an OSD fails, the primary of its

placement group is responsible for managing the recovery of objects stored

on them in this group, and degraded reads of these objects. Degraded reads

can also be initiated by the primary in case of an unresponsive OSD.
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Each placement group can be viewed as an array of nodes. Thus, an

OSD that belongs to several placement groups will likely be assigned the

role of a different node in each. Specifically, an OSD will store data blocks

of one placement group and parity blocks of another. Similarly, it will be

the primary OSD (henceforth called the primary) in some placement groups,

and a secondary OSD in others. For simplicity, from here on we refer to a

single placement group in the description of our implementation.

In an erasure-coded pool, each object is handled as a stripe. A large

object may be split into several stripes, but small objects are padded to

form a complete stripe. The object size is set when the pool is created, with

4MB as the default. Ceph supports object sizes between 4KB and 2GB.

Clients send write requests directly to the primary, which splits the object

into k data blocks (shards), and calls the encode function to generate the

parity blocks. It then uses CRUSH to distribute one block to each OSD,

according to its position in the array. The write completes when the primary

receives an acknowledgement from all the OSDs in the group.

Read requests are also sent directly to the primary. In normal operation,

the primary fetches the data blocks requested by the client from the OSDs

that store them. If one or more data nodes are unavailable, the primary

executes a degraded read in order to recover the missing blocks. Specifically,

if exactly one data node is unavailable, the primary requests the entire stripe

from the surviving data nodes. When k blocks arrive at the primary, it

recovers the lost data block by calling the decode function, and sends the

requested data to the client.

4.1.2 Recovery Process

When a node is permanently unavailable, a new node must be assigned

to the placement group. However, CRUSH instead replaces most of the

nodes in the placement group, which leads to unexpected data movement.

This, in turn, leads to increased disk reads and writes of data that needs to

be recovered. We prevent these redundant data movements, by preventing

CRUSH from recalculating the placement groups, forcing it to only replace

the failed node1.

Then, the placement-group enters recovery state. We consider two cases:

1This is done by setting the chooseleaf_stable parameter to true
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If the original primary has failed, the new primary will read the required

data for recovery and write the recovered data directly to its low level stor-

age. However, if a secondary has failed, the primary fetches data from the

surviving OSDs in order to recover the data that was stored on the failed

OSD. Then, the primary decodes the missing data, stores it on its own disk

and sends the data to the new secondary which replaced the failed one. Even

though the data is stored on the primary’s disk, it is pipelined directly to

the destination OSD and does not incur additional reads.

CRUSH relies on a pseudo random function to assign objects to place-

ment groups. When both the number of nodes and number of objects are

sufficiently large, this results in a uniform distribution. However, in our

evaluation, we observed significant differences between the number of recov-

ered objects in each experiment. In order to minimize such influences, we

set the number of placement groups to 512, which was the maximal possible

for our setup.

4.1.3 Limitations

Ceph’s erasure-coded pools are ideal for evaluating the performance implica-

tions of new erasure codes. They support a wide range of object sizes, with

the encoding and decoding mechanisms on the critical path of both writes

and degraded reads. However, erasure-coded pools in Ceph are restricted in

that they do not allow updates. Partial object updates are implemented by

splitting the object into 4KB encoded stripes, and ensuring an entire stripe

is updated as a whole. Thus, they are unsuitable for the demonstration of a

code’s small update cost. We discuss the update cost of Zigzag codes in Sec-

tion 3.3. Ceph also prevents partial degraded reads of erasure coded objects,

and converts them to reads of entire objects—all the surviving data blocks

are read, even if the decoding mechanism does not require them for recovery.

This conversion is a fundamental design choice in Ceph, and thus we were

unable to implement our optimizations described in Section 3.3 within the

scope of this work.
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4.2 Zigzag in Ceph

4.2.1 Code Functionality

When implementing Zigzag codes in Ceph, we must consider the basic en-

coding and decoding functionality required when a new code is added to a

system that supports erasure-coded pools. We must also consider the struc-

tural changes required when adding an array code to a system that was

designed for scalar codes.

We implement Zigzag encoding for a wide range of parameters, including

6 ≤ k ≤ 10, 2 ≤ r ≤ 4 and 1 ≤ s ≤ 5. We implement and optimize decoding

for the recovery from one failure, which is the focus of this work. For all

the parameter combinations in our evaluation, we compute, in advance, the

coefficients in the coding equations and the optimal dependency sets to use

in the recovery of each failed node. When applicable, we choose the optimal

construction from Table 3.1, i.e., the one that results in the shortest average

distance during recovery. We assign contiguous blocks to twin nodes with

Ceph’s chunk mapping mechanism.

Some of our parameter combinations allow codes to be constructed with

coefficients from a finite field as small as GF (22), while the largest arrays

require them to be chosen from GF (28). The GFComplete library provides

an efficient implementation that is similar in performance for GF (24) and

GF (28) [22]. Thus, we simplify our implementation by using coefficients

from GF (28) for all constructions. This is also the default field size for

Reed-Solomon in Ceph. For constructions with virtual nodes, we replace

the coefficients of the virtual elements with zeroes in the coding equations

they appear in. This effectively removes them from the dependency sets, so

that they are never actually required for decoding.

4.2.2 Structural Changes

The main challenge in implementing Zigzag in Ceph is handling elements

as sub-parts of blocks. CRUSH is repeatedly queried by both primary and

secondary OSDs, in order to assign and discover the location of data and

parity blocks. A näive implementation will split objects into elements, em-

ulating a k ×m scalar code, and allow CRUSH to determine their location.

However, CRUSH will then treat each element as a block, and might place
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elements of the same block on different OSDs, violating the MDS property

of the code. In order to use CRUSH correctly, we are forced to distinguish

between elements and blocks within the erasure code implementation itself,

and to modify the interface between the primary and secondary OSDs as

follows. We modify encode to split objects into an m× k array and gener-

ate m× r parity elements. The elements in each column are grouped into a

block, so that CRUSH distributes the n blocks across the placement group,

oblivious to their internal structure.

We ensure that elements are aligned to sector (4KB) boundaries, to

allow efficient access during recovery. This is a modification of the original

design that aligns blocks to the largest vector word size boundaries (128B-

512B). Alignment is done by “rounding up” the stripe size according to the

aligned element size, adding padding at the end of the stripe. The amount

of padding depends on the number of elements and their non-aligned sizes,

and can be considerably larger than that of the original block alignment.

We logically treat the padded data as zeroes, which makes its effect on the

evaluation negligible. The primary, which is responsible for encoding and

decoding, keeps record of the elements that were added at the end of the

stripe as a result of padding and contain only zeroes, and removes them

from the dependency sets they belong to. Thus, they are never required for

recovery, and never requested from the secondary OSDs.

Next, we modify required_to_reconstruct, the function that deter-

mines which blocks to fetch for degraded reads or recovery. In its original

implementation, in case of a single failure, this function marks all available

data blocks and the simple parity block as “required” in a special structure,

read_request_t, which is sent to k OSDs. Each OSD identifies its own

block in this structure, reads it, and sends it to the primary. This is the

case even if the client requests a small portion of the unavailable block. We

modify the read request t structure to include a bitmap of the object’s

elements, and modify the function to set the bits corresponding to those

data and parity elements in the dependency sets chosen for recovery.

We modify the block-based interface between the primary and secondary

OSDs to allow recovery by elements, rather than full blocks. The primary

includes a bitmap of the object’s elements, and sets the bits correspond-

ing to those data and parity elements in the dependency sets chosen for

recovery. Each OSD reads the required elements from its low level storage,
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and aggregates them into a single response buffer. The primary maps the

content of each response buffer to the required elements and then calls the

decode function to recover the missing data.
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Chapter 5

Evaluation

We use our implementation of Zigzag in Ceph to evaluate the practical

benefit of the optimal rebuilding ratio. Our goal is to understand how our

optimizations affect the encoding and decoding throughput of Zigzag codes,

and how the tradeoff between element size and rebuilding ratio is reflected

in the overall recovery cost. We focus on codes that do not incur additional

overheads, and thus use Reed-Solomon, the most widely used MDS code, as

our baseline. We discuss additional codes in Chapter 6.

5.1 Encoding and Decoding Throughput

Previous studies showed that the encoding and decoding efficiency have

little to no effect on the overall recovery cost of large scale systems. In

multiprocessor storage nodes, these computations are streamlined with the

network transfers and I/O overheads required for distributing an object’s

blocks and storing them on (or fetching them from) durable storage [7,

16, 17, 19, 21]. To confirm these assumptions, we measure the in-memory

encoding and decoding throughput with a standalone implementation of

Zigzag that uses the Jerasure [23] and GFComplete [22] libraries. It also

includes a Reed-Solomon implementation that is Ceph’s default for erasure-

coded pools. We run our tests on a dedicated server with two 8-core Intel�
Xeon� 2.40GHz CPUs.

In each test, we write an object of random data and encode it while it

is still in memory. We then measure the average time to decode the object
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when one block is missing. We repeat the process for each of the blocks,

separately, and average the results for all n blocks. Each experiment consists

of a different set of parameters, for which we run five tests, each with a new

randomly generated object, and report the average of the results.

We vary the stripe size (6 ≤ k ≤ 10), the number of parity nodes (2 ≤ r ≤
4), and the duplication factor (1 ≤ s ≤ 5), and run an experiment for every

valid parameter combination. We repeat each experiment with different

object sizes (4MB-32MB), field sizes (GF (28)-GF (232)), alignment values

(512B-16KB), and optimized constructions. In relevant configurations (see

Table 3.1), we repeat the experiment with basic and optimized constructions.

With a total of almost 2000 experiments, we summarize our findings and

omit the detailed results.

We find that only two parameters affect computation efficiency consider-

ably. The first is the field size, which affects Reed-Solomon and Zigzag in a

similar manner: their encoding throughput with GF (216) is up to 23% and

16% higher than with GF (28) and GF (232), respectively. We believe the

cause for this behavior is the implementation of the finite field multiplica-

tion in GFComplete. For consistency, we use Ceph’s default field, GF (28),

in the rest of our evaluation.

The second parameter was the number of parity nodes, which affected the

encoding throughput of Zigzag more than it did this to Reed-Solomon. The

encoding throughput of Reed-Solomon was up to 96% higher than Zigzag’s

with r = 2, and up to 52% and 36% higher with r = 3 and r = 4, respectively.

This is the result of the number of coefficients which equal 1 in the coding

equations of Zigzag, which is considerably lower than those of the Reed-

Solomon implementation in Ceph. Jerasure applies simple XOR operations

in those cases, instead of the finite-field multiplication required in Zigzag.

Decoding a single missing block is 3-6 times faster in Reed-Solomon, which

uses the simple parity block and equations in this scenario. Nevertheless, the

results from our evaluation in Ceph show that the CPU utilization is similar

during both Zigzag and Reed-Solomon decoding, and is not the bottleneck

of the recovery process.

We find that the optimized constructions, element alignment, stripe size,

and virtual nodes do not affect encoding and decoding throughput. This is

true also for code duplication, with one interesting exception. Zigzag with

r = 2 and no duplication is 39%-108% faster than Zigzag with the same
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parameter combination with duplication. In this basic Zigzag construction,

51% and 79% of the coefficients are 1, when k is 6 and 8, respectively. This

eliminates a considerable amount of finite field multiplications, speeding up

encoding and decoding considerably.

Encoding in Reed-Solomon is 4%-96% faster than in Zigzag, thanks to

its highly optimized implementation in Ceph. This advantage is more pro-

nounced with r = 2 (21%-96%faster) than with r = 3 (4%-52% faster) and

r = 4 (5%-36% faster). Decoding a single missing block is 3-6 times faster

in Reed-Solomon, which uses the simple parity block and equations in this

scenario. However, if we force decoding with another parity, decoding is

33%-66% slower in Reed-Solomon. This is because Zigzag decodes half of

the elements with simple parity equations.

Increasing the field size from GF (28) to GF (216) in Zigzag increased en-

coding throughput by 8%-23%. However, increasing it to GF (232) reduced

throughput by 1%-16%. Reed-Solomon experienced similar behavior. De-

coding throughput, however, was not consistently affected by field size. We

believe the cause for this behavior is the implementation of the finite field

multiplication in GFComplete. We use Ceph’s default field, GF (28), in the

rest of our evaluation.

The relative difference between encoding and decoding throughput of

Reed-Solomon and Zigzag codes is high. However, on a single core, Zigzag

encoding throughput is 60-230MB/sec, and its recovery throughput is 50-

150MB/sec. In a multiprocessor storage node, these computations are stream-

lined with the network transfers and I/O overheads required for distributing

an object’s blocks and storing them on (or fetching them from) durable

storage. We thus focus on the storage and network costs of recovery.

5.2 Cluster Recovery Cost

Our cluster consists of 10 servers, each equipped with two 8-core Intel�
Xeon� 2.40GHz processors and two 0.5TB HDDs, connected by a 10Gb

Ethernet switch. We use one of the servers to run the metadata server,

monitor, a single OSD and an I/O workload generator, which we describe

below. We set up two OSDs on each of the remaining servers, one per HDD,

so that the total number of OSDs in each experiment is 19, 18 of which

survive. In each experiment, we first populate the cluster with objects so
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that each HDD stores a total of 10GB of data blocks, plus the parity blocks

generated by the encoding mechanism.

To ensure that recovery data is read directly from the disk, we clear the

caches of Ceph before every run of the experiment1. During the recovery

process, every object is read at most once so that the caches do not interfere

with our measurements.

Next, we kill one OSD daemon and remove this OSD from the cluster.

This initializes the recovery process, which recovers the data and distributes

it across the remaining OSDs. We repeat the entire experiment with Reed-

Solomon and with Zigzag, using the configurations summarized in Table 5.1.

Due to the random mapping of objects to placement groups in CRUSH, the

number of objects that are recovered in each configuration may vary by up

to 15%. We eliminate this variation from our results by calculating the

amount of data read from disk and the amount of data transferred per GB

of data recovered in each experiment. We use three different object sizes,

4,16, and 64MB, aligning all elements to sector (4KB) boundaries.

As we expected, encoding and write throughput are the same for Reed-

Solomon and Zigzag. The CPU utilization is also the same, both during

cluster population and during recovery. We thus focus on the storage and

network costs of recovery.

5.2.1 Disk Reads and Rebuilding Ratio

Figure 5.1 shows the amount of data read from disk per GB recovered by

each of the Zigzag constructions, normalized to the amount of data read by

Reed-Solomon with the same k,r, and object size. Our results show that

Zigzag can reduce the amount of data read for all (k,r) configurations with

at least one construction, and usually with all of them. With 64MB objects

(Figure 5.1(a)), Zigzag reads as little as 63% and 61% of the data read by

Reed-Solomon, when k = 10 and r is 3 and 4, respectively. The reduction

in the amount of data read is 20%-30% in almost all the combinations we

examined.

For each configuration, we also show the expected amount of reads, which

1We do this by applying two simple commands: sudo echo 3 | sudo tee

/proc/sys/vm/drop_caches && sudo sync
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k r s m Data elements RR Element size (KB)

1 32 192 0.5 21 / 85 / 341
6 2 2 4 24 0.57 171 / 683 / 2730

3 2 12 0.64 341 / 1365 / 5461
1 243 1458 0.33 3 / 11 / 45

3 2 9* 56 0.42 73 / 293 / 1170
3 3 18 0.5 228 / 910 / 3641

1 128 1024 0.5 4 / 16 / 64
8 2 2 8* 64 0.55 64 / 256 / 1024

3 4 32 0.6 128 / 512 / 2048
2 27 216 0.4 19 / 76 / 303

3 3 9* 72 0.45 57 / 228 / 910
4 3 24 0.53 171 / 682 / 2731
2 64 512 0.32 8 / 32 / 128

4 3 16* 128 0.37 32 / 128 / 512
4 4 32 0.45 128 / 512 / 2048

2 81 810 0.39 5 / 20 / 81
10 3 3 27 270 0.42 15 / 61 / 243

4 9* 90 0.47 45 / 182 / 728
5 3 30 0.56 137 / 546 / 2185
3 64 640 0.34 6 / 26 / 102

4 4 16* 160 0.39 26 / 102 / 410
5 4 40 0.48 102 / 410 / 1638

Table 5.1: Zigzag constructions in our evaluation. m is the number of rows, RR
is the rebuilding ratio of data disks, and starred configurations also include an
optimal construction. We include the resulting element size (before alignment) for
4/16/64MB objects.
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Figure 5.1: The amount of data read by Zigzag during recovery, normalized to the
amount read by Reed-Solomon, using the conservative reads approach.

is the rebuilding ratio of Zigzag, including recovery of parity nodes, divided

by the rebuilding ratio of Reed-Solomon. Our results show that with large

objects (64MB), the amount to data read is very close to this expected

amount. The difference between the amount read and the expected amount

increases as object size decreases, as shown in Figures 5.1(b) and 5.1(c), for

objects of size 16MB and 4MB, respectively. The reason for this difference

is the disk’s readahead mechanism, which reads more sectors from the disk

than are requested. This affects Zigzag, especially with small elements, while

it does not affect Reed-Solomon which reads entire blocks.

It is interesting to note that while the optimal recovery cost (1r ) decreases

as r increases, the reduction in recovery cost is similar for all r values in our

evaluation. The reason is that in practice, larger values of r require larger

duplication factors, which increase the rebuilding ratio.

Increasing the duplication factor, s, reduces the element size, but also

increases the theoretical rebuilding ratio. Indeed, we observe that its opti-

mal value is not necessarily the maximal one—when the elements are large

enough to ensure efficient disk reads, increasing the duplication factor fur-
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ther increases the amount of data read. This increase is usually small (up

to 3%), with the exception of one setup: with k = 6 and r = 2, increasing s

from 2 to 3 increases the element size from 2730 to 5461KB, and increases

the amount of data read by 19%.

Reducing the object size reduces the element size, which reduces the se-

quentiality of recovery reads. Figures 5.1(b) and 5.1(c) show the normalized

amounts of data read with objects of size 16MB and 4MB, respectively.

Thanks to our use of code-duplication, we are able to ensure that elements

are large enough to always reduce disk reads considerably. With 16MB

objects, Zigzag reads as little as 57%, 66% and 65% of the data read by

Reed-Solomon, when k = 8 and r is 2, 3 and 4, respectively. With 4MB

objects and the optimal duplication factor, Zigzag reads as little as 68%,

81% and 64% of the data read by Reed-Solomon, when k = 8 and r is 2, 3

and 4, respectively.

We note that the optimal duplication factor for the same k and r combi-

nation depends on the object size. This demonstrates the sensitivity of read

efficiency to the interaction between element size and disk characteristics—

namely, its track size and read-ahead parameters. Choosing the optimal

duplication factor ensures minimal recovery I/O cost, but may require care-

ful fine tuning. Fortunately, our results indicate that a simple rule of thumb,

such as choosing the smallest s for which m ≤ 256, achieves most of the cost

savings with little risk of unwanted overheads.

5.2.2 Read-Ahead Mechanism

The evaluation of the disk reads in Figure 5.1(c) reveals a common pattern

in which objects with element sizes which are larger than and are not aligned

to 128KB boundaries, incur higher read overheads. We specifically refer to

the two configurations: 〈k = 10, r = 3, s = 5〉 and 〈k = 8, r = 3, s = 4〉,
in which the element sizes are 137KB and 171KB, respectively. In these

configurations, the amount of data read is 42% and 30% more than the

optimum.

In contrary, in the configuration 〈k = 8, r = 2, s = 3〉, in which the

element size is precisely 128KB, we read only 11% more than the opti-

mum. This phenomena can be explained by disk read-ahead units, which

are normally 32KB-128KB in size [8].
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5.2.3 Disk Writes

Ceph’s journal is responsible for lowering the writes latency by writing the

client’s data to a contiguous journal file before writing to the randomly

positioned destination. Since sequential writes on HDDs are faster, the

journal decreases Ceph’s latency. However, the journal causes some of the

data to be written twice, firstly at the journal and then at the object’s

location on disk. To avoid measurements of the double writes we moved

the journal file to a tempfs, i.e. a file-system which resides on memory.

Doing so in real system settings puts Ceph at risk of losing data in case of

failures, but is acceptable for measurement and evaluation purposes in our

lab setting. We ensure that the journal’s data is flushed to disk before we

start our recovery experiment, so that all the recovery reads are taken into

account when measuring the amount of data read from disk.

The amount of measured writes during recovery is approximately double

the amount of recovered data. The main reason is that the primary OSD

manages recovery, and therefore all data needed for recovery is sent to the

primary OSD and written on its local disk to ensure consistency. Only then,

it is sent to the destination node. This increases the amount of writes as long

as the primary is not the destination node. We calculated the expected num-

ber of writes considering the number of objects recovered, and the number

of objects with a failed primary. The measured writes are 7% to 30% more

than the expected, due to additional mechanisms of Ceph such as commit

logs which we didn’t consider in our calculation. Figure 5.2 demonstrates

the ratio between the measured writes with 64MB objects. The results

for other object sizes were higher. For example, writes for 4MB using the

conservative approach were 60% to 227% higher than expected. We noticed

that more elements increased the difference between measured to expected

writes. This strengthens our assumption that consistency mechanisms which

store per-object data cause the excessive writes.

5.2.4 Network Transfers

Figure 5.3 shows the amount of data transmitted across the cluster per GB

recovered with each object size and configuration. We expect this amount

to be slightly higher than the amount of data read from disk due to the

additional metadata that must be transferred with each node’s elements.
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Figure 5.2: The ratio between measured writes to expected writes in 64MB objects
using the conservative reads approach

Indeed, in configurations where the elements are smaller than 64MB, the

amount of data transferred is 3%-8% higher than the theoretical optimum.

However, In configurations with element sizes of approximately 64KB-

512KB, the amount of data transferred is smaller than the amount of data

read from the disk, because it is not affected by the disk’s read-ahead mech-

anism that reads unnecessary data.

5.2.5 Recovery Time

Figures 5.4 and 5.5 show the recovery time of Zigzag, normalized to that of

Reed-Solomon, using conservative and aggressive approaches. With 64MB

objects (Figure 5.4(a)), Zigzag completes the recovery in as little as 72%

and 76% of the time required by Reed-Solomon, when k = 6 and r is 2

and 3, respectively. With objects of size 64MB and 16MB (Figure 5.4(b)),

Zigzag can reduce the recovery time for all (k,r) configurations with at least

one construction, and usually with all of them. However, with small objects

(Figure 5.4(c)), there are many configurations in which the recovery time is

close to, or even exceeds, that of Reed-solomon.

The reason is that Zigzag sends many small read requests to the disk,

which must be performed synchronously and serialized due to Ceph’s design.

The number of requests is proportional to the number of elements (detailed
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Figure 5.3: The amount of data transferred by Zigzag during recovery, normalized
to the amount transferred by Reed-Solomon, using the conservative reads approach.

in Table 5.1). Although we coalesce requests to adjacent elements, the num-

ber of I/Os is still high, and their context-switching overhead is dominant

when the amount of data read is small, even if much of it was prefetched by

the disk. This problem motivated our aggressive approach for issuing disk

accesses.

5.2.6 Aggressive Approach

We repeated our experiments using the aggressive approach for coalescing

elements. The recovery time measurements can be seen in Figure 5.5. Gen-

erally speaking, using the aggressive approach, larger elements result in a

shorter recovery time. This is due to the lower amount of asynchronous oper-

ations required for recovery. When compared to the conservative approach,

the aggressive approach has a shorter recovery time when the duplication

factor s is large. However, with smaller duplication factors, the aggressive

approach recovers much slower than the conservative approach. Smaller

duplication factors result in more rows and therefore, using the aggressive
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(a) Conservative, Object size = 64MB
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(b) Conservative, Object size = 16MB
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(c) Conservative, Object size = 4MB

Figure 5.4: Recovery time of Zigzag, normalized
to that of Reed-Solomon, using the Conservative
approach.
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(c) Aggressive, Object size = 4MB

Figure 5.5: Recovery time of Zigzag, normalized
to that of Reed-Solomon, using the Aggressive ap-
proach.
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Figure 5.6: The amount of data read by Zigzag during recovery, normalized to the
amount read by Reed-Solomon, using the aggressive reads approach.

approach, more elements which are not needed for recovery are read, in-

creasing recovery time. However, when the number of rows is small, the

aggressive approach results in fewer I/O requests and therefore the recovery

is faster. For example, in the configuration 〈k = 10, r = 4, s = 5〉 with all

object sizes, the aggressive approach results in a shorter recovery time.

Figure 5.6 shows the amount of data read using the aggressive approach.

The same principle applies here: lower duplication factor causes the aggres-

sive approach to read more. For example, when 〈k = 8, r = 2, s = 1〉, we
read 98%−99% of Reed-Solomon, in all object sizes. Using the conservative

approach, the amount of reads varies between 68% to 71% with all object

sizes. Using the aggressive approach, we read a number of elements precisely

matching the read distance presented in Section 3.2. The difference in disk

reads between aggressive to conservative approaches is equivalent to the dif-

ference between the read distance, and the number of elements needed for

recovery. Clearly, this difference is larger when the number of rows is larger,

therefore smaller duplication factors result in more reads.
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r 2 3 4

k 8 6 8 10 8 10

4MB 22 10 -1 -6 1 -3
16MB -1 -8 -2 -8 4 7
64MB -2 -6 -5 1 0 -4

r 2 3 4

k 8 6 8 10 8 10

4MB -8 -10 -8 -9 -7 -11
16MB -5 -9 -6 -10 -7 -11
64MB 6 -3 -5 -1 -1 0

(a) Conservative Approach (b) Aggressive Approach

Table 5.2: The difference (in percent) between the data read by the basic con-
struction and the optimal one. Positive values (marked in bold) indicate that the
optimal construction reads more data than the basic one.

5.2.7 Optimal Constructions

Using the aggressive approach, the optimal construction improves reads in

all cases but one, as can be seen in Table 5.2(b). This is since the aggressive

approach minimizes the number of separate reads. With a minimum value of

separate reads, decreasing the average distance clearly reduces the number

of measured reads. A single configuration acts differently: when 〈k = 8, r =

2, s = 2〉 with objects of size 64MB, the optimal construction increases the

amount of data read. The reason is that the optimal construction in this

case enlarges a read of 4 sequential elements to 5 elements. The average

read distance is indeed reduced, but the read-ahead mechanism might cause

the optimal construction to read more.

The conservative approach, presented in Table 5.2(a), is usually prefer-

able, because it reduces the amount of data read, compared to Reed-Solomon,

more than the aggressive approach. The difference in the amount of data

read by the optimal construction and the basic one was 1%-8% in almost

all our configurations using the conservative approach, demonstrating their

success in making I/Os more sequential. There was, however, one exception,

the same one we observed in the aggressive approach. In the construction

〈k = 8, r = 2, s = 2〉, the amount of data read increased by 22%. The

reason is that the optimal construction reduces the average distance of ele-

ments read, but might increase the number of I/O requests issued in some

scenarios. This might increases the amount of data prefetched by the disk,

as well as the overall recovery time. As observed in the aggressive approach,

minimizing the number of separate reads improves the situation, but still

the optimal construction does not improve in this specific configuration.

44

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



n k s Reed-Solomon Zigzag Pyramid Normalized Pyramid

8 6 1 6 4.12 3.33 3.75
9 6 1 6 3.78 3.6 4
10 8 1 8 5.2 4.36 4.8
11 8 2 8 5.09 4.67 5.09
12 8 2 8 5 4.92 5.33
13 10 2 10 5.9 5.71 6.15
14 10 3 10 6.04 6 6.43

Table 5.3: The expected amount of data read for reconstruction in case of a single
failure, normalized to Reed-Solomon, for a (n, k) code of the specified type. We
assume the lowest duplication factor used in our experiments in the Zigzag column.
The minimal number of read blocks for a (n, k) configuration is marked in bold.

5.3 LRC Comparison

In order to provide a more thorough comparison of Zigzag to common code,

we compare each (n, k) Reed-Solomon configuration with r = n − k, to

a (n, k) basic Pyramid code configuration. We thus compare each Reed-

Solomon configuration to an LRC configuration that protects against (at

least) the same number of concurrent arbitrary failures, r. Namely, we

replace one global parity with two local parities, increasing the storage over-

head by 1
k . Indeed, for the same reliability characteristics, Pyramid and

Zigzag represent opposite points on the trade-off between storage overhead

and data sequentiality. The storage overhead in Pyramid is larger than the

overhead of Reed-Solomon and of Zigzag, as will be shown below.

The LRC configuration we consider requires an additional node in each

placement group. As a result, each failed node will affect more placement

groups and will require reconstruction of more missing blocks. Consider,

for example, our evaluation setup with 19 nodes, 512 placement groups and

3040 objects. With (n = 8, k = 6), we expect the failed node to store blocks

from 1280 objects, since the probability that a placement group consists of

the failed node is 8
19 . However, in the basic Pyramid construction, the stripe

size is 9 due to the addition of an extra parity node. One failed node will

store blocks from 1440 objects, since the probability that a placement group

consists of the failed node is 9
19 in this case. This is 9

8 times the number of

failed blocks in the corresponding Zigzag configuration.

In order to compare Pyramid to our Reed-Solomon and Zigzag results,
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Figure 5.7: A theoretical evaluation of the expected ratio between the chosen
Pyramid configuration reads in case of a failure, to Reed-Solomon. Next to it, we
show the amount of data read by Zigzag during recovery, normalized to the amount
read by Reed-Solomon, using the conservative request coalescing.

we first calculate the amount of data read per failed block in each code. We

then multiply this amount in the case of LRC by n+1
n , to reflect the higher

number of blocks that must be repaired for a single failure. Table 5.3 shows

the results of these calculations for the configurations we examined. The

normalized pyramid column reflects multiplying by the n+1
n factor mentioned

above. It is noticeable that the only configurations in which the Pyramid

configuration reads less than Zigzag are 〈n = 8, k = 6〉 and 〈n = 10, k = 8〉.
In the rest of the configurations, not only the storage overhead in Zigzag

is lower, but also the amount of data required for recovery is lower than in

basic Pyramid code.

We now compare the expected amount of data read by Pyramid code to

our experimental measurements in Ceph. Figure 5.7 shows the amount of

data read by Reed-Solomon and Zigzag with 64MB objects, as well as the

amount of data we expect to read by the Pyramid configurations.

We observe that when 〈k = 8, r = 4〉 and 〈k = 10, r = 4〉, Zigzag is

better than Pyramid both theoretically and practically. In both cases there

are 4 parity nodes, which cause an extremely low theoretical bound on the

rebuilding-ratio (1r ). In addition, when 〈k = 6, r = 3〉, 〈k = 8, r = 3〉, 〈k =

10, r = 3〉, Zigzag is theoretically better than Pyramid, but practically re-

quires more reads. These configurations all have r = 3, therefore Zigzag

has a low rebuilding ratio. On the other hand, according to Section 5.2.2,
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these are the configurations in which the read-ahead mechanism induces the

highest read overhead.

When 〈k = 6, r = 2〉, 〈k = 8, r = 2〉, Pyramid is better than Zigzag both

theoretically and practically. In these configurations r = 2, and therefore

the rebuilding ratio of Zigzag is higher than with larger r values. The extra

reads caused by the read-ahead mechanism induce a non-negligible overhead,

which causes Zigzag require more reads.

It is worth mentioning that in Pyramid code, we believe that the amount

of data actually read will be a lot closer to the theoretical amount, thanks

to reading full blocks. However, determining the effect on recovery time

requires a full implementation in Ceph, which is outside the scope of this

work.
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Chapter 6

Discussion

6.1 Recovery of Parity Nodes

A recent study [40] described a general construction for symmetric codes, for

which the rebuilding ratio of parity nodes equals that of data nodes, and is

optimal (1r ). With their approach, we can construct symmetric Zigzag—an

extension to Zigzag codes for which the rebuilding ratio is 1
r for all nodes.

The structure of the dependency sets is similar to that in Zigzag, but the

simple parity node is replaced with an additional Zigzag parity, to allow

optimal recovery of the parity nodes. The improved rebuilding ratio comes

at a cost: an (n,k) symmetric Zigzag code with r = n− k parity nodes has

m = rn−1 rows, compared to rk−1 rows in Zigzag.

The optimizations described in Chapter 3 can be applied to symmet-

ric Zigzag codes. However, they are likely to be less effective due to their

large number of rows. Specifically, applying symmetric Zigzag in real system

settings will require choosing a high duplication factor, s, which in turn in-

k r m Zigzag (original) Symmetric Zigzag
8 2 8 0.67 (s = 2) 0.67 (s = 4)
8 3 27 0.54 (s = 2) 0.8 (s = 8)
10 3 27 0.54 (s = 3) 0.83 (s = 10)
10 4 256 0.46 (s = 2) 0.77 (s = 10)

Table 6.1: Average rebuilding ratio (both data and parity nodes) of the original
and symmetric Zigzag codes with the same number of rows (the smallest possible
for the symmetric code).
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creases the rebuilding ratio. Table 6.1 compares the average rebuilding ratio

(of both data and parity nodes) of symmetric Zigzag and that of the original

Zigzag for several (n,k) constructions with the same target number of rows.

The average was calculated as [k×(ratio of data blocks)+r×(ratio of parity

blocks)]/n. The resulting rebuilding ratio of the symmetric code is many

times higher than that of the original one, which can also be constructed

with considerably smaller numbers of rows. Thus, the applicability of the

symmetric codes is restricted to systems that can either tolerate very small

element sizes, or use very large objects.

6.2 Duplication of General Array Codes

Although duplication was originally proposed for Zigzag codes [34], it can

be applied in a similar manner to array codes in general, with similar use

of twin elements and nodes for recovery, and similar increase in rebuilding

ratio. However, it requires finding the set of coefficients that will preserve

the code’s properties—most importantly, its being MDS. In some cases, the

coefficients have to be chosen from a larger field than those of the original,

duplicated code. This has no practical effect on Zigzag, but binary (XOR-

based) codes such as Butterfly or EVENODD will not be binary in their

duplicated version. The benefits from code duplication should therefore be

evaluated in the context of the design goals of each specific code.

6.3 Small Update Cost

Most systems apply an append-only model in which blocks of an existing

object cannot be updated once written to permanent storage [3, 16, 26]. If

their data must be modified, the entire object is replaced. However, in the

general case, client write requests may partially modify an encoded stripe’s

data, which requires the parity elements to be updated as well. The small

update cost (or update penalty) is defined as the number of parity elements

that must be updated when one data element is updated. This update

requires reading each parity element’s dependency set, though these sets

need not be disjoint.

In Zigzag codes, each data element belongs to the dependency set of

exactly r parity elements, which is the optimal lower bound. However, these
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parity elements and the data elements in their dependency set are distributed

across the array’s rows, requiring nonsequential I/O access. This problem is

common to all array codes, similar to the nonsequential I/O access during

recovery. Due to the limitations in Ceph described above, we were unable to

directly evaluate the update penalty of our optimized Zigzag constructions.

We expect that our optimizations for reducing the number of rows will also

reduce the update cost considerably.

6.4 Solid State Storage Nodes

While hard disks continue to dominate the storage landscape, solid state

drives (SSD) store increasing portions of the world’s data, and erasure-coded

pools of SSDs are not uncommon [5]. SSDs have no mechanical moving part,

enabling them to perform random and sequential I/O at comparable speeds.

However, SSD performance is highly sensitive to write amplification (caused

by out-of-place updates) and garbage collection overheads. Thus, although

motivated by hard disks, reducing the number of rows and increasing element

size to match the SSD page size is desirable when implementing Zigzag on

nodes equipped with SSDs.
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Chapter 7

Related Work

XOR based codes such as EVENODD [1], RDP [6], HoVer [13] andWEAVER [14]

were designed to increase the efficiency of encoding and decoding proce-

dures. However, recent studies show that with today’s processors, finite

field operations for fields up to GF (232) are highly efficient [22], and their

computational overhead has little impact on overall recovery cost [7, 16, 17,

19, 21]. Thus, current research efforts focus instead on reducing network

traffic and storage I/O costs.

One approach is to reduce recovery costs of existing codes. Examples

include delaying recovery to amortize its costs [31] and storing parity on an

additional non-volatile memory to reduce traffic and storage overheads [29].

Another algorithm [17] minimizes the number of elements read in each failure

scenario in XOR based codes. It incurs nonsequential I/Os and achieves an

average rebuilding ratio of 3
4 (the optimal for EVENODD [35]) or higher.

Local reconstruction codes add parity nodes to an array, so that one

node can be recovered accessing only a small subset of the nodes in the

array. Examples include Product [9] and Pyramid codes [15], LRC, which

is used in Windows Azure [16], HACFS [39], Xorbas [30], and optimal-

LRC [33]. These codes are non-MDS: the dependency sets of the additional

local parity nodes are a subset of the data nodes, so they do not protect

against arbitrary node failures. Thus, these codes introduce a tradeoff be-

tween storage efficiency and repair speed. HACFS [39] builds on such codes

to dynamically adjust the system’s overall storage overhead and average re-

covery speed by migrating hot and cold data to arrays with more or fewer

parity nodes, respectively. Another family of non-MDS codes addresses the
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recovery of a failed block within an otherwise healthy node. SD [21] and

STAIR codes [19] add parity blocks that allow efficient recovery of bad hard

disk sectors or SSD blocks. In contrast to the above approaches, Zigzag

codes are MDS, and reduce recovery costs without increasing storage costs.

Minimum storage regenerating (MSR) codes [7, 24] reduce network band-

width but read the entire content of the surviving nodes. RBT [27] improves

on product-matrix MSR codes [24] by reducing the amount of data read from

some of the surviving nodes, and is applicable for arrays with r = k. In con-

trast to their approach, Zigzag codes minimize I/O as well as network costs

and are applicable to a wide range of practical system settings. For example,

in one of these code families, the data sent over network can be thought of

as if it was optimally compressed to achieve the optimal ratio, however the

data is not originally stored in this compressed manner. These codes are

named minimum bandwidth regenerating (MBR) codes in [24].

RotatedRS [17] and Hitchhiker-XOR [25] reduce recovery I/O for a wider

range of parameters. Based on Reed-Solomon, they are both array codes

and rely on large elements in order to achieve real I/O savings, though

their number of rows is small. Their rebuilding ratio varies according to

the system parameters, but it is close to 1
r only in very limited settings.

A recent study [12] achieves a rebuilding ratio of 3
4 for unmodified Reed-

Solomon codes and any r, but relies on the ability to read the surviving

blocks in bit granularity.

A recent work that is closely related to ours implements Butterfly codes [10]

in order to evaluate their real recovery cost [20]. Butterfly can be viewed

as a modification of Zigzag, which is applicable only for r = 2. It requires

only XOR operations, but some (O(k2)) elements belong to the dependency

sets of more than two parity elements. The authors’ evaluation shows that

large objects are essential for realizing the benefits of optimal rebuilding ra-

tio, while for small objects the amount of data read and transferred is even

greater than for Reed-Solomon. With our optimizations, Zigzag can reduce

recovery costs for any r, and for small as well as large objects.
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Chapter 8

Conclusions

Optimizing the recovery of a single failure in an erasure coded array has

been the focus of numerous studies. However, as the theoretical optimiza-

tions continue to improve, their applicability to realistic system settings is

limited. In this paper, we showed that by trading the theoretical optimality

of recovery in Zigzag codes for I/O sequentiality, we can reduce recovery

costs considerably in practical system settings. We do this for both large

and small objects, and without increasing the storage overhead, which is the

tradeoff adopted by most systems to date. Our evaluation results suggest

additional system-level optimizations that are likely to reduce these costs

even further, and are part of our future work. They also motivate further

research to address the system-level implications with theoretical coding

techniques.
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בפקולטה שוסטר אסף ופרופ׳ יעקובי איתן פרופ׳ ידגר, גלה דר׳ בהנחיית נעשה המחקר

המחשב למדעי

לעזור מנת על שלי, המחקר למען שלה העצומה הזמן השקעת על ידגר לגלה להודות ארצה

לי ולעזור התלבטות ברגעי הנכונות ההחלטות לקבלת אותי לכוון מכשולים, על להתגבר לי

שביצעתי, והצגה הגשה כל הדרך. לאורך וריאליות מפורטות זמנים ניהול תוכניות בהכנת

המחקר לנסיון תודות לספק, שיכלתי המירבית ובאיכות בזמן קרו עצמה, התזה הגשת ואפילו

על יעקובי, ואיתן תמו ליצחק להודות ארצה בנוסף, שלה. המעולות התכנון וטכניקות הרב

את לנתח ביכולתי היה לא עזרתם, ללא התזה. של התאורטי החלק בהבנת הרבה העזרה

גם להודות ארצה זיגזג׳. קודי ב׳שפת שוטף כה באופן ולדבר מדויקת, כה בצורה התוצאות

קודי ומפענח מקודד של באיכותה מדהימה גרסה במימוש הרבה העזרה על חכימי לעידו

בנוסף, זו. עזרה אילולא באגים מציאת על להתבזבז שיכלו רבות שעות לי שחסכה זיגזג,

כך ועל למחקר, כיוונים לגבי לנו שסיפק החוכמה פניני על שוסטר לאסף להודות ארצה

הנסיון שנות מירב ביותר. הטוב ובאופן הנכונות המחקר שאלות את לשאול לנו שאפשר

כמדויקות התבררו רב זמן שלאחר לשאלות, מהירות תשובות לי לתת לו אפשרו במחקר שלו

להפליא.

שנתנו כך ועל המחקר, תקופת לאורך בי הרבה תמיכתם על שלי להורים להודות ארצה

בהם בזמנים גם להתייאש ולא ולחקור, להמשיך מנת על הדרך לאורך מנטליות דחיפות לי

בלוחות ולעמוד במחקר להתקדם שלי הרב הרצון הרצויה. במהירות התקדם לא המחקר

לב למשרד לשותפי גם להודות ארצה שלהם. הרבה והתמיכה מהעידוד רבות נבע הזמנים

לאורך נתקלתי בהן תאורטיות בבעיות הרבה סקרנותו ועל במשרד, זמני הנעמת על יוחננוב,

קשות בעיות לפתור לי עזרו שהעלה היצירתיים והרעיונות שלו הרבה הסקרנות המחקר.

המחקר. להמשך תנופה לי ונתנו

בשלבים לעיל. שהוזכרה העזרה ללא המחקר את לסיים מצליח הייתי לא הנראה, ככל

מרגיש אני ומשומן. גדול מחקר במפעל הקטן תפקידי את ממלא שאני נדמה היה מסוימים,

ומהנה. איכותית מקצועית, כה קבוצה עם האחרונות השנתיים את לבלות בר־מזל

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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תקציר

הן שרתים נפילות שרתים, אלפי עשרות עד מאות הכוללים מודרניים נתונים אחסון במרכזי

גדולות אחסון מערכות מכך, כתוצאה שכיחות. הן בזו זו התלויות ונפילות שבשגרה, עניין

אובייקט כל של עותקים שלושה מאחסנות הן יתירות: של גבוהות דרגות עם מאורגנות

התכופות השרתים נפילות שרתים. מערך בכל יתירות שרתי ארבעה עד מוסיפות או נתונים,

עודפת ותעבורה לדיסק עודפות מגישות החל במערכת, רב עומס שיוצר שחזור תהליך גוררות

אליהן. הנלוות והקירור האנרגיה צריכת עלויות על שרתים של פעילות בשעות וכלה ברשת,

לתיקון קודים ידי על המוגנים שבמערכים הראה פייסבוק של האחסון במרכזי עדכני מחקר

מאמצי זאת, בעקבות .180TB של גודל בסדר עודפת תעבורה גוררות שחזור פעולות שגיאות,

האמור המחקר אלו. במערכות השחזור עלויות את להוריד בניסיון מושקעים רבים מחקר

שמערכות למרות אכן, בודד. שרת של נפילה כללו הנפילות מן אחוזים ש־98 גם הראה

נפילות מספר של במקרה גם המידע על לשמור בנויות שגיאות לתיקון קודים ידי על המוגנות

בודדת. נפילה של במקרה שחזור של הביצועים בשיפור מושקעים רבים מאמצים זמנית, בו

תקינים, שרתים של קטנה קבוצה תת בעזרת שחזור מאפשרים (LRC) מקומי לשחזור קודים

התעבורה כמות את מקטינים אחרים קודים אחסון. נפח של גבוהה בתקורה מאופיינים אך

הקשיח. הדיסק מן התקינים הנתונים רב של קריאה דורשים עדיין אך לשחזור, הדרושה

נעשה כאשר שרת מכל לקרוא שיש הנתונים כמות את להקטין מציעות נוספות גישות מספר

בתבנית מתבצעות לדיסק הגישות אלו בשיטות עליהם. בווריאציות או קיימים בקודים שימוש

במיוחד. גדולים אובייקטים מאוחסנים שבהן למערכות רק מתאימות ולכן סדירה, לא

שיש הנתונים אחוז שהוא השחזור, יחס את שממזערים קודים על מבוססת מבטיחה גישה

החסם את משיגים אלו קודים התקינים. בשרתים המאוחסנים הנתונים כל מתוך לקרוא

בפיצול מאופיינים אלו קודים מפורשות. בניות באמצעות הזה היחס על התחתון התיאורטי

מתקבל הנמוך השחזור יחס ״יסודות״. ממאות מורכבים מקודדים אובייקטים רב: פנימי

היסודות אך תקין, שרת בכל המאוחסנים היסודות של קבוצות תתי של קריאה באמצעות

האחסון. התקן גבי על סדרתית לא בצורה מאוחסנים בהכרח

א
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בעיקר הנתונים, אחסון מרכזי ברב השלטת האחסון טכנולוגיית את מהווים קשיחים דיסקים

בקודים ושמשתמשים (״קרים״) נמוכה בתדירות אליהם שניגשים לנתונים המוקצים בחלקים

כמו סדרתיות לא גישות שלהם. והזמינות השרידות את להבטיח כדי שגיאות לתיקון

אפילו קשיחים. דיסקים ביצועי של בהקשר הרסניות להיות עלולות לעיל המתוארות אלו

מורידה קבועים ובמרווחים במקטעים נתונים של רצפים נקראים שבה ״דילוגים״, של תבנית

סדרתיות הלא הגישות של שהעלות הדגים עדכני מחקר המערכת. תפוקת את משמעותית

את להגדיל עלולות הן מסויימים ושבמקרים השחזור, יחס מהקטנת הרווח את לבטל עלול

לשחזור. הנדרש הזמן את גם כמו בפועל, שנקראת הנתונים כמות

יחס ולהשיג למעשה, התאוריה בין המתח על להקל ניתן כיצד מראים אנו זה מחקרנו במסגרת

המאופיינים זיג־זג, בקודי שימוש עושים אנו אמיתיות. אחסון במערכות מיטבי כמעט שחזור

השחזור יחס בין לאזן המאפשרת מובנית גמישות לצד מיטביים, אחסון ותקורת שחזור ביחס

גמישות, אותה ידי על המאופשרים שיפורים סדרת מציגים אנו הגישות. סדרתיות לבין

של משמעותית הקטנה מאפשרת התיאורטי השחזור ביחס מועטה הגדלה כיצד ומראים

על גם להפעלה ניתנים האמורים השיפורים מן חלק אמיתית. במערכת השחזור עלויות

אחרים. קודים

כוונו קודמות שגישות בעוד שבבסיסם: המטרה מן נובעת שלנו השיפורים של החדשנות

הסדרתיות את להגדיל מתוכננים שלנו השיפורים לשחזור, הדרושה הנתונים כמות להקטנת

קוד״, ב״שכפול משתמשים אנו יותר. רבים נתונים קריאת של במחיר גם נתונים, אותם של

שכפול משלבים אנו שבו. הפנימי הפיצול הגדלת ללא במערך השרתים מספר להגדלת טכניקה

אך במערכת) קיימים לא כן (ועל מידע מאחסנים שאינם שרתים וירטואליים״: ״שרתים עם

את לבחור מערכות למתכנני ומאפשרים למימוש הניתנים הפרמטרים מרחב את מגדילים

זיג־זג קודי של הכללי התכנון את מנצלים אנו כן, כמו לצרכיהם. ביותר המתאימה הבניה

בנוסף, ביותר. הסדרתיות השחזור גישות עם השחזור וסכמות הבניות את לבחור מנת על

סוף של ״לוגי״ ריפוד ידי על 4KB של גזרה לגבולות האובייקטים יסודות את מיישרים אנו

סמוכים יסודות לבסוף, הקשיח. הדיסק גבי על בפועל נשמרים שלא באפסים האובייקט

בשרת. ההקשר חילופי של התקורה את להקטין מנת על בודדת בבקשה הדיסק מן נקראים

בקוד מבוזרת אחסון מערכת ־ CEPHב־ שלנו השיפורים עם יחד זיג־זג קוד את מימשנו

שגיאות לתיקון קוד עבור המחדל ברירת שהם ,REED־SOLOMON לקודי אותם והשווינו ־ פתוח

להקטין יכולים זיג־זג קודי הפנימי, הפיצול הקטנת ידי שעל מראים שלנו הניסויים במערכת.

אחוזים (ב־19 שחזור בזמן ברשת ונשלחת הדיסק מן הנקראת הנתונים כמות את משמעותית

קוד בעזרת קודמות, לגישות בניגוד אחוזים). 28 (עד השחזור משך את וכן אחוזים), 39 עד

עבור וכן הנפוצים, היתירות ומידות המערכים גדלי כל עבור דומה שיפור להשיג ניתן זיג־זג

קטנים. אובייקטים

ב
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