
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.

Managing Capacity in Deduplicated
Storage Systems

Aviv Nachman

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Managing Capacity in Deduplicated
Storage Systems

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Aviv Nachman

Submitted to the Senate
of the Technion — Israel Institute of Technology
Heshvan 5781 Haifa October 2020

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

This research was carried out under the supervision of Dr. Gala Yadgar, in the Henry
and Marilyn Taub Faculty of Computer Science

Some results in this thesis have been published as articles by the author and re-
search collaborators in conferences and journals during the course of the author’s master
research period, the most up-to-date versions of which being:

Aviv Nachman, Gala Yadgar, and Sarai Sheinvald. GoSeed: Generating an optimal seeding
plan for deduplicated storage. In 18th USENIX Conference on File and Storage Technologies
(FAST 20), pages 193–207, Santa Clara, CA, February 2020. USENIX Association.

Acknowledgements

I would like to thank my advisor, Dr. Gala Yadgar, for her encouragement, guid-
ance and support throughout this M.Sc. thesis work. I would also like to thank Sarai
Sheinvald and Ariel Kolikant for their valuable help as part of this project. Last but
not least, I would like to thank my family and friends for their continued love and
support and especially my beloved parents Yaron and Sigalit that were always there
for me.

The generous financial help of the Technion is gratefully acknowledged.

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Background and Related Work 9
2.1 Deduplication . 9
2.2 Data migration . 10
2.3 Existing data migration approaches . 11
2.4 Integer linear programming (ILP) . 12

3 GoSeed ILP optimization 13
3.1 Problem definition and hardness . 13
3.2 ILP formulation . 14
3.3 Refinements . 16
3.4 Complexity . 17

4 GoSeed Acceleration Methods 19
4.1 Solver timeout . 19
4.2 Fingerprint sampling . 19
4.3 Container-based aggregation . 20

5 Implementation 23

6 Evaluation 25
6.1 Experimental setup . 25

6.1.1 Deduplication snapshots . 25
6.1.2 Evaluation platform . 27
6.1.3 Comparison to existing approaches 27

6.2 Results . 29
6.2.1 Comparison of different algorithms 29

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

6.2.2 Effect of ILP parameters . 31
6.2.3 Effect of solver timeout . 33
6.2.4 Effect of fingerprint sampling . 34
6.2.5 Efficiency of container-based plans 34

6.3 Containers analysis . 36

7 Discussion 39
7.1 Generalizations . 40

8 Conclusions 41

A Hardness proof 43

Hebrew Abstract i

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

List of Figures

3.1 Example system and its formulation as an ILP problem, where the goal is to
migrate 30% of the physical space (M = 3). 14

3.2 The system from Figure 3.1 after applying the optimal migration plan with
M = 3. 15

3.3 A migration plan with an orphan block. The goal is to migrate 30% (M = 3) of
the system in (a). b2 is the orphan—it was duplicated when f2 was remapped
(b). 17

4.1 The system from Figure 3.1 with container aggregation. 20

6.1 Replication cost of seeding plans. Missing bars indicate a solution was
not found. 26

6.2 Runtime of seeding algorithms. For GoSeed, we present the average of three
runs, with error bars indicating the maximum runtime. 27

6.3 GoSeed plans generated with sampling degree K=12. 29
6.4 Cumulative distribution of blocks, ranked by the number of files they are con-

tained in. 30
6.5 Solving time increases exponentially with instance size (gray bars indicate that

the solver timed out). 32
6.6 Cost is hardly affected by the sampling degree, unless the instance becomes too

large. 32
6.7 Migration cost decreases when timeout increases (costs are shown for three

random seeds). 32
6.8 Replication cost of container-based migration plans. For GoSeed, we present

the average of three runs (error bars indicate the maximum cost). Triangles
indicate experiments in which the solver timed out. GoSeed outperforms the
greedy solutions by as much as 87%. 33

6.9 Cumulative distribution of containers, ranked by the number of files pointing
to them. 35

6.10 Distribution of pointers to each block within all containers with 54 files pointing
to themt. 36

6.11 Percent of new containers within the containers pointed by each file. 37

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

A.1 An illustration of the (k, m)-full cover → (m, ϵ, r)-block move reduction. 44

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abstract

Deduplication decreases the physical occupancy of files in a storage volume by removing
duplicate copies of data chunks, but creates data-sharing dependencies that complicate
standard storage management tasks. Specifically, data migration plans, which consist
the information of which files are remapped and which are not, must consider the
dependencies between files that are remapped to new volumes and files that are not.
Thus far, only greedy approaches have been suggested for constructing such plans, and
it is unclear how they compare to one another and how much they can be improved
theoretically and practically.

We set to bridge this gap for seeding—migration in which the target volume is
initially empty. We prove that even this basic instance of data migration is NP-hard
in the presence of deduplication. We then present GoSeed, a formulation of seeding
as an integer linear programming (ILP) problem, and three acceleration methods for
applying it to real-sized storage volumes. Our experimental evaluation shows that,
while the greedy approaches perform well on “easy” problem instances, instances with
relatively low deduplication ratio, the cost of their solution can be significantly higher
than that of GoSeed’s solution, which is our approach, on “hard” instances, for which
they are sometimes unable to find a solution at all.

1©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

2©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abbreviations and Notations

V : Storage volume
BV : Set of unique blocks stored on V

FV : Set of files mapped to V

IV : Inclusion relation, where (b, f) ∈ IV means that block b is included in file f

s : Size function, assigns a size for each block
M : Desired physical size for migration
ϵ : Tolerance value of migration size
k : Sampling degree used in fingerprint sampling acceleration method

3©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1

Introduction

Data deduplication is one of the most effective ways to reduce the size of data stored
in large scale systems. Deduplication consists of identifying duplicate data chunks in
different files, storing a single copy of each unique chunk, and replacing the duplicate
chunks with pointers to this copy. Deduplication reduces the total physical occupancy,
but increases the complexity of management aspects of large-scale systems such as
capacity planning, quality of service, and chargeback [SCJ16].

Another example, which is the focus of this study, is data migration—the task of
moving a portion of a physical volume’s data to another volume—typically performed
for load balancing and resizing. Deduplication complicates the task of determining
which files to migrate: the physical capacity freed on the source volume, as well as
the physical capacity occupied on the target volume, both depend on the amount of
deduplication within the set of migrated files, as well as between them and files outside
the set (i.e., files that remain on the source volume and files that initially reside on the
target volume). An efficient migration plan will free the required space on the source
volume while minimizing the space occupied on the target. However, as it turns out,
even seeding, in which the target volume is initially empty, is a computationally hard
problem.

Data migration in deduplicated systems and seeding in particular are the subject
of several recent studies, each focusing on a different aspect of the problem. Harnik
et al. [HHS+19] address capacity estimation for general migration between volumes,
while Duggal et al. [DJS+19] describe seeding a cloud-tier for an existing system. Ran-
goli [NK13] is designed for space reclamation—an equivalent problem to seeding. These
studies propose greedy algorithms for determining the set of migrated files, but the ef-
ficiency of their resulting migration plans has never been systematically compared.
Furthermore, in the absence of theoretical studies of this problem, it is unclear whether
and to what extent they can be improved. Our objective in this study is threefold: a
theoretical framework for the seeding optimization problem, a practical framework for
finding concrete solutions, and a rigorous evaluation of our practical framework with
respect to the state-of-the-art

5©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

We present GoSeed, a new approach that bridges this gap for the seeding and,
consequently, space reclamation problems. GoSeed consists of a formulation of seeding
as an integer linear programming (ILP) problem, providing a theoretical framework
for generating an optimal plan by minimizing its cost—the amount of data replicated.
Although ILP is known to be NP-Hard, commercial optimizers can solve it efficiently
for instances with hundreds of thousands of variables [SYM, lps, GNU, CPL, Gur]. At
the same time, ILP instances representing real-world storage systems may consist of
hundreds of millions of variables and constraints—too large even for the most efficient
optimizers, that may require prohibitively long time to process these instances. Thus,
GoSeed also includes three practical acceleration methods, each presenting a different
tradeoff between runtime and optimality.

The first method, solver timeout, utilizes the optimizer’s ability to return a feasible
suboptimal solution when its runtime exceeds a predetermined threshold. A larger
timeout value allows the optimizer to continue its search for the optimal solution, but
increasing the timeout may yield diminishing returns. The second method, fingerprint
sampling, is similar to the sketches used in [HHS+19], and generates an ILP instance
from a probabilistically sampled subset of the system’s chunks. An optimal seeding plan
generated on a sample will not necessarily be optimal for the original system. Thus,
increasing the sample size may reduce the plan’s cost, but will necessarily increase the
required processing time of the solver.

Our third method, container aggregation, generates an ILP instance in terms of
containers—the basic unit of storage and I/O in many deduplication systems. Con-
tainers typically store several hundreds of chunks, where chunks in the same container
likely belong to the same files. When they do, containers represent the same data
sharing constraints as their chunks. In addition to reducing the problem size, migrat-
ing entire containers can be done without decompressing them, and without increasing
the system’s fragmentation. At the same time, a container-based ILP instance may
introduce “false” sharing between files, resulting in a suboptimal plan.

We implement GoSeed with the Gurobi [Gur] commercial optimizer, and with the
three acceleration methods. We generate seeding plans for volumes based on dedupli-
cation snapshots from two public repositories [MB11, FSL]. Our evaluation reveals the
limitations of the greedy algorithms proposed for seeding thus far—while they success-
fully generate good plans for “easy” problems (with modest deduplication), GoSeed
generates better solutions for the harder problems, for which the greedy approaches
sometimes return no solution.

We performed a detailed analysis of the distribution of blocks into containers, and
the number of files containing each block or pointing to each container. Our results
explain what makes some problem instances harder than others. Our analysis further
demonstrates the efficiency of the acceleration methods in GoSeed. It shows that (1)
the suboptimal solution returned by GoSeed after a timeout is often better than the
greedy solutions, (2) fingerprint sampling “hides” some of the data sharing in volumes

6©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

with modest deduplication, but provides an accurate representation of systems with
substantial deduplication, and (3) GoSeed’s container-based solutions are optimal if
entire containers are migrated. Our results suggest several rules of thumb for applying
and combining these three methods in practical settings.

The rest of this paper is organized as follows. Chapter 2 provides background on
deduplication and ILP, as well as related previous work. We present the ILP formulation
of GoSeed in Chapter 3, its acceleration methods in Chapter 4, and our implementation
Chapter 5. Our experimental setup and evaluation are described in Chapter 6, with a
discussion in Chapter 7. Chapter 8 concludes this work.

7©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

8©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2

Background and Related Work

2.1 Deduplication

The smallest unit of data in a deduplication system is a chunk, which typically consists
of 8-64KB. The incoming data is split into chunks of fixed or variable size, and the
fingerprint of each chunk is used to identify duplicates and to replace them with pointers
to existing copies. Each Fingerprint is computed by a predefined hash function. The
fingerprint is used as a lookup key in the fingerprint index, which stores the fingerprints
of all the chunks currently in the system. If the fingerprint is large enough compared
to the size of the chunk, the probability of a collision, where different chunks have the
same fingerprint, is lower than the probability of an error in the underlying storage
media [ZLP08]. Thus, chunks with the same fingerprint are considered identical, or
duplicate.

In many systems, new chunks are written to durable storage in containers, which
are the system’s I/O unit, and typically consist of hundreds of chunks [ZLP08, LEB+09,
LSD+14, DSL10, GE11]. New chunks are added to containers in a log structure. Thus,
chunks belonging to the same file will likely reside in adjacent containers. Designs
that do not employ containers typically also persist the chunks in a log structure, and
thus adjacent chunks will likely belong to the same files [SBGV12, CLZ11, DGH+09,
CAVL09].

To recover a file, all the containers pointed to by the file recipe are fetched into mem-
ory, after which the file’s chunks are collected. The efficiency of this process, in terms
of I/O and memory usage, strongly depends on the file’s fragmentation: the physical lo-
cation of the different containers and the portion of the container’s chunks that belong
to the requested file [NLP+11]. Some systems reduce the amount of fragmentation by
limiting the number of containers a file may point to, or their age [LEB13, FFH+14].

Over the last decade, numerous studies addressed the various aspects of dedu-
plication system design, such as characterizing and estimating the system’s dedu-
plication potential [WDQ+12, FS13, MKB+12, MB11, SKM+16, HKS16], efficient
chunking and fingerprinting [Man94, XJF+14, XZJ+16, MCM01, AAA+10], indexing

9©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

and lookups [ZLP08, SBGV12, ADK+18], restore performance [FFH+14, zCWWD18,
LEB13, KBKD12], compression[YJTL16, LLD+14], and security [HPSP10, BCQ+13,
SGLM08, LCL+14]. Their success (among others) has made it possible to use dedupli-
cation for primary storage and not just for archives. Additional studies explored ways
to adapt the concept of deduplication to related domains such as page caching [IG06,
LSD+14], minimizing network bandwidth [MCM01, AAA+10], management of memory
resident VM pages [GLV+08, CWC+14, XTL+18], and minimizing flash writes [CLZ11,
EMC15, GPUS11, LSD+14, Wal02, SK12].

Recently, Shilane et al. [SCJ16] described the “next” challenge in the design of
deduplication systems: providing these systems with a set of management functions
that are available in traditional enterprise storage systems, Their examples include
quality of service guarantees, fault tolerance, end-to-end security, and analysis functions
such as capacity estimation and free space reclamation. Traditional techniques for
implementing these functions are not directly applicable to deduplicated systems. In
this research, we address the challenge of capacity management in deduplicated systems,
and specifically, fast and effective data migration.

2.2 Data migration

Data migration is typically performed in the background, according to a migration plan
specifying which data is moved to which new location. Typical objectives when gener-
ating a migration plan include minimizing the amount of data transferred, optimizing
load balancing, or minimizing its effect on ongoing jobs.

The effectiveness of data migration and the resources it consumes may greatly af-
fect the system’s performance. Thus, efforts have been made to optimize its various as-
pects including service down-time, geolocation, provisioning, memory consumption, and
system-specific performance requirements and constraints [MHS18, TAB11, LAW02,
STFG08]. Hippodrome [AHK+02] and Ergastulum [AKS+02] formulated the storage
allocation problem as an instance of bin-packing, while Anderson et al. [AHH+01] ex-
perimentally evaluated several theoretical algorithms, concluding that their theoretical
bounds are overly pessimistic.

The distinction between logical and physical capacity in deduplicated systems in-
troduces additional complexity to the data migration problem. For optimal read and
restore performance, the physical copies of a file’s chunks must reside on the same stor-
age volume. Thus, when migrating a file from one volume to another, this file’s chunks
that also belong to another file must be copied (duplicated), rather than moved. As
a result, migrating data from a full volume to an empty one is likely to increase the
total physical capacity of the system. Migrating data between two non-empty volumes
can either increase or decrease the total physical capacity, depending on the degree of
duplication between the migrated data and the data on the target volume. Intuitively,
to optimize the system’s overall storage utilization, a migration plan should minimize

10©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

the amount of data that is duplicated as a result.
Deduplication complicates other related tasks in a similar manner. Garbage col-

lection must consider the logical as well as the physical relationships between chunks,
files, and containers. Unfortunately, specific approaches for optimizing garbage col-
lection are not directly applicable to data migration [DDS+17, LEB13, FFH+14]. As
another example, online assignment of streams to servers in distributed systems must
consider both content similarity and load balancing. Current solutions distribute data
to servers in the granularity of individual chunks [DGH+09], super-chunks [DDL+11],
files [BELL09], or users [DBQS11], considering server load as a secondary objective.
These online solutions are based on partial knowledge of the data in the system, and
may result in suboptimal plans if applied directly to data migration.

2.3 Existing data migration approaches

A recent paper describes the Data Domain Cloud Tier, in which customers maintain
two tightly connected deduplication domains, in an on-premises system and in a remote
object store [DJS+19]. They dedicate special attention to the process of seeding the
cloud-tier—migrating a portion of the on-premises system into an initially empty object
store. While the choice of the exact files to migrate is deferred to the client, the general
use-case is to keep older backups in the cloud-tier and newer ones on-premises. The
authors refer to “many days or weeks possibly required to transfer a large dataset to
the cloud”, strongly motivating our goal to minimize the amount of data replicated
during migration.

Rangoli is a greedy algorithm for space reclamation in a deduplicated system [NK13].
Although it predates [DJS+19] by several years, its problem formulation is equivalent:
choose a set of files for migration from an existing volume to a new empty volume.
Rangoli constructs a migration plan by greedily grouping files into roughly equal-sized
bins according to the blocks they share, and then chooses for migration the bin whose
files have the least amount of data shared with other bins. The migration objective is
specified as the number of bins.

In another recent paper, Harnik et al. address migration in the broader context
of load balancing [HHS+19]. Their system consists of several non-empty volumes,
each operating as an independent deduplication domain. The goal is to estimate the
amount of deduplication between files on different volumes, to determine the potential
occupancy reduction achieved by migrating files between volumes.1 The focus of the
study is a sketching technique that facilitates this estimation. In their evaluation, the
authors propose a greedy algorithm that iteratively migrates files from one volume to
another, with the goal of minimizing the overall physical occupancy in the system.

1In the original paper, migration is described in terms of moving logical volumes between physical
servers. Thus, their volumes are equivalent to what we refer to as files, for simplicity.

11©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Capacity planning and space reclamation in deduplicated systems are relatively
new challenges. Current solutions are either naïve—migrating backups according to
their age—or greedy. At the same time, migration carries significant costs in terms
of physical capacity and bandwidth consumption, and it is unclear whether and how
much the greedy solutions can be improved upon. This gap is the main motivation of
our study.

2.4 Integer linear programming (ILP)

Integer linear programming (ILP) is a well-known optimization problem. The input to
ILP is a set Ax of linear constraints, each of the form a0x0 + a1x1 · · · + an−1xn−1 ≤ c,
where a1, . . . , an, c ∈ Z, and an objective function of the form Tx = t0x0 + t1x1 +
· · · + tn−1xn−1. The problem is finding, given Ax and Tx, an integer assignment to
x0, x1, . . . , xn that satisfies Ax and maximizes Tx. There is no known efficient algorithm
for solving ILP. In particular, when the variables are restricted to Boolean assignments
(0 or 1), then merely deciding whether Ax has a solution has been long known to be
NP-Complete[Kar72].

Nevertheless, ILP is used in various fields for modeling a wide range of prob-
lems [RH02, Aba89, ZWM12, ZSW16]. This wide use has been made possible by
efficient ILP solvers—designated heuristic-based tools that can handle and solve very
large instances. Thus, despite its theoretical hardness, ILP can in many cases be solved
in practice for instances that contain hundreds of thousands and even millions of vari-
ables and constraints.

Most ILP solvers are based on the Simplex algorithm [Dan63], which efficiently
solves linear programming where the variables are not necessarily integers. They then
search for an optimal integer solution, starting the search at the vicinity of the non-
integer one. The wide variety of ILP solvers includes open-source solvers such as SYM-
PHONY [SYM], lp_solve [lps], and GNU LP Kit [GNU]. Industrial tools include IBM
CPLEX [CPL] and the Gurobi optimizer [Gur]. In this research, we take advantage of
these highly-optimized solvers for finding the optimal migration plan in a deduplicated
storage system.

12©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3

GoSeed ILP optimization

We formulate the goal of generating a migration plan as follows. Move physical data of
size M from one volume to another, while minimizing R, the total size of the physical
data that must be copied (replicated) as a result. In a seeding plan, the target volume
is initially empty. We refer to R as the cost of the migration. Note that in a seeding
plan, minimizing R minimizes the total capacity of the system, as well as the amount
of data transferred between volumes during the migration.

3.1 Problem definition and hardness

For a storage volume V , let BV = {b0, b1, . . . , bm−1} be the set of unique blocks stored
on V , and let s(b) be the size of block b. The storage cost of the volume is the total
size of the blocks stored on it, i.e., s(V) = Σbi∈BV

s(bi). Let FV = {f0, f1, . . . , fn−1}
be the set of files mapped to V , and let IV ⊆ BV × FV be an inclusion relation, where
(b, f) ∈ IV means that block b is included in file f . We intentionally disregard the
order of blocks in a file, or blocks that appear several times in one file. While this
information is required for restoring the original file, it is irrelevant for the allocation
of blocks to volumes.

We require that all the blocks included in a file are stored on the volume this file
is mapped to. Thus, if a file f is remapped from V1 to V2, then every block that is
included in f must be either migrated to V2 or replicated. Similarly, if we migrate a
block b from volume V1 to volume V2, then every file f such that (b, f) ∈ IV1 must be
remapped from V1 to V2.

The seeding problem is to decide, given a source volume V1 with BV1 , FV1 , IV1 ,
an empty destination volume V2, a target size M and a threshold size R, whether
there exists a set B′ ⊆ BV1 of blocks whose total size is M , that can be migrated
from V1 to V2, such that the total size of blocks that are replicated is at most R. In
practice, we are interested in the respective optimization problem. Namely, the seeding
optimization problem is to find such a set B′ while minimizing R. A solution to the
seeding optimization problem is a migration plan: the list of files that are remapped,

13©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1. 0 ≤ x0, x1, x2, m0, m1, m2, r0, r1, r2 ≤ 1

2. m0 ≤ x0, m0 ≤ x1, m1 ≤ x1, m1 ≤
x2, m2 ≤ x2

3. x0 ≤ m0 + r0, x1 ≤ m0 + r0, x1 ≤ m1 + r1,
x2 ≤ m1 + r1, x2 ≤ m2 + r2

4. 4 · m0 + 3 · m1 + 3 · m2 = 3

Goal: minimize 4 · r0 + 3 · r1 + 3 · r2

Figure 3.1: Example system and its formulation as an ILP problem, where the goal is to
migrate 30% of the physical space (M = 3).

the list of blocks that are replicated, and B′—the list of blocks that are migrated from
V1 to V2.

We prove that the seeding problem is NP-hard using two polynomial reductions
from a known NP-hard problem. Intuitively, the relationship between files and blocks
influences the quality of the solution, because the decision whether to migrate a specific
block depends on the decision regarding other blocks. In this aspect, seeding is similar
to many other set-selection problems such as Set Cover, Vertex Cover, and Hitting Set,
that are known to be NP-hard [Kar72].

The first polynomial reduction is from the k-clique problem, which is known to be
NP-hard, to the (k, m)-full cover problem. The k-clique problem is to determine in a
given graph, G = (V, E), if there exists a clique of size k. A set of vertices is considered
a clique if there exists an edge, in the original graph, between each two vertices in
the set. The second polynomial reduction is from the (k, m)-full cover problem to the
seeding problem. The (k, m)-full cover problem is to determine if there exists a set of
vertices of size at most k s.t it covers at least m edges. An edge is considered covered if
both of its vertices are in the chosen set. A concatenation of the reductions will prove
that the seeding problem is NP-hard. The full proof is demonstrated in Appendix A.

The hardness of the seeding problem, which is the most basic form of data migration,
implies that all other related problems are hard as well. This includes data migration
in more complex instances: systems with more than one source and one destination
volumes, non-empty destination volumes, and optimizations that must also consider
additional objectives, such as I/O load or migration traffic. The hardness of the problem
also implies that there is an inevitable gap between the greedy solution and the optimal
one. This gap is the focus of this study.

3.2 ILP formulation

We model the seeding optimization problem as an ILP problem as follows. For every
file fi ∈ FV1 we allocate a Boolean variable xi. Assigning 1 to xi means that fi is

14©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

· Block b2 is migrated: m2 = 1

· File f2 is remapped: x2 = 1

· Block b1 is replicated: r1 = 1

· The remaining files and blocks are untouched:
x0 = x1 = m0 = m1 = r0 = r2 = 0

· The total cost is R = 3 · r1 = 3

Figure 3.2: The system from Figure 3.1 after applying the optimal migration plan with M = 3.

remapped from V1 to V2. For every block bi ∈ BV1 we allocate two Boolean variables,
mi, ri. Assigning 1 to mi means that bi is migrated from V1 to V2, and assigning 1 to
ri means that bi is replicated and will be stored in both V1 and V2.

We model the problem constraints as a set of linear inequalities, as follows.

1. All variables are Boolean: 0 ≤ xj ≤ 1, 0 ≤ mi ≤ 1, and 0 ≤ ri ≤ 1 for every
fj ∈ FV1 and bi ∈ BV1 .

2. If a block b is migrated, then every file that b is included in is remapped: mi ≤ xj

for every i, j such that (bi, fj) ∈ IV1 .

3. If a file f is rempapped, then every block that is included in f is either migrated
or replicated: xj ≤ mi + ri for every i, j such that (bi, fj) ∈ IV1 .

4. The total size of migrated blocks is M :
Σbi∈BV1

s(bi) · mi = M .

The objective function minimizes the total size of blocks that are replicated: minimize
Σbi∈BV1

s(bi) · ri.
Another intuitive constraint is that a block cannot be migrated and replicated at

the same time: mi+ri ≤ 1 for every bi ∈ BV1 . This constraint will be satisfied implicitly
in any optimal solution—if a block is migrated (mi = 1) then replicating it will only
increase the value of the objective function, and thus ri will remain 0. This is also true
for all the solutions in the space defined by the Simplex algorithm, and consequently
for suboptimal solutions returned when the solver times out.

A solution to the ILP instance is an assignment of values to the Boolean variables.
We note, however, that such an assignment does not necessarily exist. If a solution
does not exist, Simplex-based solvers will return quickly—we observed a few minutes
in our evaluation. If a solution to the ILP instance exists, we find B′ by returning every
block bi such that mi = 1, and the list of replicated blocks by returning every block bi

such that ri = 1. The list of files to remap is given by every file fi such that xi = 1.
Figure 3.1 shows an example of a simple deduplicated system, and the formulation

as an ILP instance of the respective seeding optimization problem with M = 3. The
optimal solution, depicted in Figure 3.2, is to migrate b2, replicate b1, and remap f2,

15©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

which yields R = 3. Another feasible solution is to migrate b1, whose size is also 3.
However, migrating b1 results in replicating both b0 and b2, which yields R = 7.

3.3 Refinements

The requirement to migrate blocks whose total size is exactly M may severely limit
the possibility of finding a solution. Fortunately, in real settings, there is some range
of acceptable migrated capacities. For example, for the file system in Figure 3.1, a
solution exists for M = 3 but not for M = 2. In realistic systems, feasible solutions
may be easier to find but their cost, R, might be unnecessarily high. Thus, we redefine
our problem by adding a slack value, ϵ, as follows.

For a given BV1 , FV1 , IV1 , target size M , and slack value ϵ, the seeding optimization
problem with slack is to find B′ ⊆ BV1 of blocks whose total size is M ′, M − ϵ ≤ M ′ ≤
M + ϵ, that can be migrated from V1 to V2. In the formulation as an ILP problem, we
require that the total size of migrated blocks is M ±ϵ: M −ϵ ≤ Σbi∈BV1

s(bi)·mi ≤ M +ϵ.
For example, for the system in Figure 3.1, the optimal solution for M = 2 and ϵ = 1,
is the solution given above for M = 3.

Another refinement in the problem formulation is required to prevent “leftovers”
on the source volume V1. An orphan block is copied because a file it is included in is
remapped, but no other file that includes it remains in V1. For example, consider the
system in Figure 3.3(a), with a migration objective of M = 3. For simplicity, assume
that ϵ = 0. The only feasible solution is depicted in Figure 3.3(b), where b1 is migrated,
f1 and f2 are remapped, and b2 is replicated. b2 cannot be migrated because this would
exceed the target migration size, M = 3. Replicating b2 leaves an extra copy of this
block in V1, where it is not contained in any file.

Although a migration plan with orphan blocks represents a feasible solution to the
ILP problem, it is an inefficient one. For example, b2 in Figure 3.3(b) consists of 20%
of the system’s original capacity. Orphans can be eliminated by garbage collection,
or even as part of the migration process [DJS+19]. This is essentially equivalent to
migrating the orphan blocks, rather than replicating them, resulting in a migrated
capacity which exceeds the original objective. For example, removing b2 from volume
V2 in Figure 3.3(b) is equivalent to a migration plan with M = 5, rather than the
intended M = 3.

We eliminate such solutions by adding the following constraint: if a block b is copied,
then at least one file it is included in is not remapped: ri ≤ Σ{j|(bi,fj)∈IV1 }(1 − xj) for
every bi ∈ BV1 . This additional constraint may result in the solver returning without a
solution. Such cases should be addressed by increasing ϵ or modifying M . Nevertheless,
the decision whether to prevent orphan blocks in the migration plan or to eliminate
them during its execution is a design choice that can easily be realized by adding or
removing the above constraint.

16©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 3.3: A migration plan with an orphan block. The goal is to migrate 30% (M = 3) of
the system in (a). b2 is the orphan—it was duplicated when f2 was remapped (b).

3.4 Complexity

The number of constraints in the ILP formulation is linear in the size of IV —the number
of pointers from files to blocks in the system. Although the size of IV can be at most
|BV | · |FV |, it is likely considerably smaller in practice: the majority of the files are
small, and the majority of the blocks are included in a small number of files [MB11].

In general, the time required for an ILP solver to find an optimal solution depends
on many factors, including the number of variables, the connections between them
(represented by the constraints), and the number of feasible solutions. In our context,
the size of the problem is determined by the number of files and blocks, and its com-
plexity depends on the deduplication ratio and on the pattern of data sharing between
the files. It is difficult to predict how each of these factors will affect the solving time
in practice. Furthermore, small changes in the target migration size and in the slack
value may significantly affect the solver’s performance. We evaluate the sensitivity of
GoSeed to these parameters in Chapter 6.

17©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

18©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4

GoSeed Acceleration Methods

The challenge in applying ILP solvers to realistic migration problems is their size. In a
system with an average chunk size of 8KB, there will be approximately 130M chunks
in each TB of physical capacity. Thus, the runtime for generating a migration plan
for a source volume with several TBs of data would be unacceptably long. In this
chapter, we present three methods for reducing this generation time. We describe their
advantages and limitations and the ways in which they may be combined, and evaluate
their effectiveness in Chapter 6.

4.1 Solver timeout

The runtime of an ILP solver can be limited by specifying a timeout value. When a
timeout is reached before the optimal solution is found, the solver will halt and return
the best feasible solution found thus far. This approach has the advantage of letting
the solver process the unmodified problem. It does not require any preprocessing, and,
theoretically, the solver may succeed in finding the optimal solution. The downside is
that when the solver is timed out, we cannot necessarily tell how far the suboptimal
solution is from the optimal one.

4.2 Fingerprint sampling

Sampling is a standard technique for handling large problems, and has been used in
deduplication systems to increase the efficiency of the deduplication process [LEB+09,
BELL09, CLZ11], to route streams to servers [DDL+11], for estimating deduplication
ratios [HKS16], and for managing volume capacities [HHS+19]. We use sampling in the
same way it is used in [HHS+19]. Given a sampling degree k, we include in our sample
all the chunks whose fingerprint contains k leading zeroes, and all the files containing
those chunks. When the fingerprint values are uniformly distributed, the sample will
include 1

2k chunks. Harnik et al. show in [HHS+19] that k = 13 guarantees small
enough errors for estimating the capacity of deduplicated volumes larger than 100GB.

19©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Figure 4.1: The system from Figure 3.1 with container aggregation.

Sampling reduces the size of the ILP instance by a predictable factor: incrementing
the sampling degree k by one reduces the number of blocks by half. Combining sampling
and timeouts presents an interesting tradeoff: a smaller sampling factor results in a
larger ILP instance that more accurately represents the sampled system. However,
solving a larger instance is more likely to time out and return a suboptimal solution.
It is not clear which combination will result in a better migration plan—a suboptimal
solution on a large instance, or an optimal solution on a small instance. Our analysis
in Chapter 6 shows how the answer depends on the original (unsampled) instance and
on the length of the timeout.

4.3 Container-based aggregation

Aggregation is often employed as a first step in analysing large datasets. In dedupli-
cation systems, containers are a natural basis for aggregation. Containers are often
compressed before being written to durable storage, and are decompressed when they
are fetched into memory for retrieving individual chunks. Thus, generating and execut-
ing a migration plan in the granularity of containers holds the advantage of avoiding
decompression as well as an increase in the fragmentation in the system by migrating
individual chunks from containers.

To formulate the migration problem with containers we coalesce chunks that are
stored in the same container into a single block, and remove parallel edges, i.e., point-
ers from the same file to different chunks in the same container. Figure 4.1 shows
the container view of the volume from Figure 3.1. In a real system, formulating the
migration problem with containers is more efficient than with chunks: when processing
file recipes, we can ignore the chunk fingerprints and use only the container IDs for
generating the variables and constraints.

In a system that stores chunks in containers, the container-based migration problem
accurately represents the system’s original constraints. At the same time, we can further
leverage container-based aggregation as an acceleration method by artificially increasing
the container size beyond the size used by the system. With aggregation degree K, we
coalesce every K adjacent containers into one, like we do for chunks. Thus, a system
with 4MB containers can be represented as one with 4K-MB containers by coalescing
every K original containers. Containers typically store hundreds of chunks, which
means that the size of the resulting ILP problem will be smaller by several orders of

20©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

magnitude. Furthermore, containers are allocated as fixed-size extents, which further
reduces the ILP problem complexity: the optimization goal of minimizing the total size
of migrated blocks becomes a simpler goal of minimizing their number.

A container-based seeding plan can be obtained more quickly than a chunk-based
one. Thus, if aggregation is combined with solver timeouts, a container-based subop-
timal solution will likely be closer to the optimal (container-based) solution than in
an execution solving the chunk-based instance. At the same time, container-based ag-
gregation (like any aggregation method) reduces the granularity of the solution, which
affects its efficiency as an acceleration method for the original chunk-based problem.
Namely, an optimal container-based migration plan is not necessarily optimal if the
migration is executed in the granularity of chunks.

Consider a migration plan generated with containers, and let FV2 be the set of files
that are remapped to V2 as a result of that plan. FV1 is the set of files that remain on
V1. If a container is not part of the migration plan, this means that all of its chunks
are contained only in files from FV1 . When a container is marked for migration, this
means that all of its chunks are contained only in files from FV2 . When a container
includes at least one chunk that is contained in a file from FV1 as well as in a file from
FV2 , the entire container is marked for replication. However, this container may also
contain some “false positives”—chunks that are contained only in files from FV1 (and
should not be part of the migration), or only in files from FV2 (and should be migrated
rather than replicated).

These false positives increase the cost of the container-based solution, and can
be eliminated by performing the actual migration in the granularity of chunks, as
done in [DJS+19]. However, this would eliminate the advantages of migrating entire
containers, and may cause the solver to “miss” the migration plan that would have
been optimal for the chunk-based ILP instance. We observe this effect in Chapter 6

21©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

22©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5

Implementation

We use the commercial Gurobi optimizer [Gur] as our ILP solver, and use its C++ in-
terface to define our problem instances. The problem variables (xi, mi, ri) are declared
as Binary and represented by the GRBVar data type. The constraints and objective
are declared as GRBLinExpr data type. M and ϵ are given in units of percents of
the physical capacity. Our program for converting the input files into an ILP instance
and retrieving the solution from Gurobi consists of approximately 400 lines of code.
Our implementation, as well as a description of the input format, are available at
https://github.com/avivnachman1/GoSeed.

We specify three parameters for each execution: a timeout value, the parallelism
degree (number of threads), and a random seed. These parameters do not affect the
optimality of the solution, but they do affect the solver’s runtime. Specifically, the
starting point for the search for an integer solution is chosen at random, which may
lead some executions to complete earlier than others. If the solver times out, different
executions might return solutions with slightly different costs. In our evaluation, we
solve each ILP instance in three separate executions, each with a different random seed,
and present the average of their execution times and costs.

We initiate an empty model with the GRBEnv and GRBModel constructors, and
allocate 2|BV1 | + |FV1 | binary variables by calling addVars(). The linear constraints,
described in Chapter 3, are added to the model while reading the input, as a vector
of GRBLinExpr. We assign the constraints and objective by calling addConstrs() and
setObjective(), respectively. At this point, the instance is complete and we initiate
the solving process by calling optimize(). When the optimization stage is complete, or
when the time limit is reached, the method returns and we can retrieve the assignment
for our binary variables (xi, mi, ri) by calling the model’s method, get().

23©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

24©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 6

Evaluation

The goal of our experimental evaluation is to answer the following questions:
• What is the difference, in terms of cost, between the ILP-based migration plan
and the greedy ones?
• How do the ILP instance parameters (its size, M , and ϵ) affect it’s complexity,
indicated by the solver’s runtime?
• How does timing out the solver affect the quality (cost) of the returned solution?
• How do the sampling and aggregation degrees affect the solver’s runtime and the
cost of the migration plan?
• Can we improve the container-based solutions by modifying the assignment of
blocks to containers during the deduplication process?

6.1 Experimental setup

6.1.1 Deduplication snapshots

We use static file system snapshots from two publicly available repositories. The UBC
dataset [MB11] includes file systems of 857 Microsoft employees available via SNIA
IOTTA [SNI]. The FSL dataset [FSL] includes daily snapshots of a Mac OS X Snow
Leopard server and of student home directories at the File System and Storage Lab
(FSL) at Stony Brook University [SKM+16, TMB+12]. The snapshots include, for each
file, the fingerprints calculated for each of its chunks, as well as the chunk size in bytes.
Each snapshot file represents one entire file system, which is the migration unit in our
model, and is represented as one file in our ILP instance.

To obtain a mapping between files and unique chunks, we emulate the ingestion of
each snapshot into a simplified deduplication system. We assume that all duplicates
are detected and eliminated. We emulate the assignment of chunks to containers by
assuming that unique chunks are added to containers in the order of their appearance
in the original snapshot file. We create snapshots of entire volumes by ingesting several
file-system snapshots one after the other, thus eliminating duplicates across individual

25©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

10 20 33
M (%)

0

1

2

3

4

5

6
Co

st
 (%

 re
pl

ica
te

d)

(a) UBC-50

10 20 33
M (%)

0

1

2

3

Co
st

 (%
 re

pl
ica

te
d)

(b) UBC-100

10 20 33
M (%)

0

1

2

3

Co
st

 (%
 re

pl
ica

te
d)

(c) UBC-200
10 20 33

M (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
st

 (%
 re

pl
ica

te
d)

(d) UBC-500

10 20 33
M (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
st

 (%
 re

pl
ica

te
d)

~23~17.5

(e) Homes

10 20 33
M (%)

0

10

20

30

40

50

Co
st

 (%
 re

pl
ica

te
d)

(f) MacOS-Week

10 20 33
M (%)

0

10

20

30

40

Co
st

 (%
 re

pl
ica

te
d)

(g) MacOS-Daily

Rangoli
SGreedy
SGreedy-12
SGreedy-13
GoSeed-12
GoSeed-13

Figure 6.1: Replication cost of seeding plans. Missing bars indicate a solution was not
found.

Table 6.1: Volume snapshots in our evaluation. The container size is 4MB. Dedupe is the
deduplication ratio—the ratio between the physical and logical size of each volume. Logical is
the logical size.

Volume Files Chunks Dedupe Containers Logical
UBC-50 50 27M 0.59 122K 807 GB
UBC-100 100 73M 0.34 317K 3.5 TB
UBC-200 200 138M 0.32 570K 6.7 TB
UBC-500 500 382M 0.31 1.6M 19.5 TB

Homes 81 19M 0.13 325K 9.4 TB
MacOS-Week 102 6M 0.02 74K 11.8 TB
MacOS-Daily 200 6.3M 0.01 85K 26.3 TB

snapshots. The resulting volume snapshot represents an independent deduplication
domain.

The volume snapshots used in our experiments are detailed in Table 6.1. The UBC-
X volumes contain the first X file systems in the UBC dataset. These snapshots were
created with variable-sized chunks with Rabin fingerprints, whose specified average
chunk size is 64KB. In practice, however, many chunks are 4KB or less. The FSL snap-
shots were also generated with Rabin fingerprints and average chunk size of 64KB. The
MacOS-Daily volume contains all available daily snapshots of the server between May
14, 2015 and May 8, 2016, while the MacOS-Week volume contains weekly snapshots,
which we emulate by ingesting the snapshots from all the Fridays in repository. The
Homes volume contains weekly snapshots of nine users between August 28 and October
23, 2014 (nine weeks in total).

26©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

10 20 33
M (%)

100

101

102

Ti
m

e
(s

ec
)

(a) UBC-50

10 20 33
M (%)

100

101

102

103

Ti
m

e
(s

ec
)

(b) UBC-100

10 20 33
M (%)

100

101

102

103

Ti
m

e
(s

ec
)

(c) UBC-200

10 20 33
M (%)

100

101

102

103

104

Ti
m

e
(s

ec
)

6 hours

(d) UBC-500

10 20 33
M (%)

100

101

102

103

Ti
m

e
(s

ec
)

(e) Homes

10 20 33
M (%)

100

101

102

103

Ti
m

e
(s

ec
)

(f) MacOS-Week

10 20 33
M (%)

100

101

102

103

104

Ti
m

e
(s

ec
)

6 hours

(g) MacOS-Daily

Rangoli
SGreedy
SGreedy-12
SGreedy-13
GoSeed-12
GoSeed-13

Figure 6.2: Runtime of seeding algorithms. For GoSeed, we present the average of three runs,
with error bars indicating the maximum runtime.

6.1.2 Evaluation platform

We ran our experiments on a server running Ubuntu 18.04.3, equipped with 64GB
DDR4 RAM (with 2666 MHz bus speed), Intel® Xeon® Silver 4114 CPU (with hyper-
threading functionality) running at 2.20GHz, one Dell® T1WH8 240GB TLC SATA
SSD, and one Micron 5200 Series 960GB 3D TLC NAND Flash SSD. We let Gurobi
use 38 CPUs, and specify a timeout of six hours, to allow for experiments with a wide
range of setup and problem parameters.

6.1.3 Comparison to existing approaches

We use our volume snapshots to evaluate the quality of the migration plans generated
by the existing approaches described in Chapter 2.3. We implement Rangoli according
to the original paper [NK13]. Rangoli’s greedy grouping into bins is performed as
follows. First, it divides the blocks into disjoint sets, such that all the blocks in a set
are contained in the same files. Each set of blocks is represented by a block-node whose
weight is the sum of its blocks’ sizes. Each block-node is connected by an edge to each
of the files containing its blocks. The algorithm then iteratively groups files into bins:
it initializes each file as a bin, and traverses the block-nodes in descending order of
their weights. For each block-node, it creates a list of bins connected to it and merges
them in order of their logical size. The merge continues as long as the resulting bin is
no larger than the logical volume size divided by B.

We convert our migration objective M into a number of bins B, such that B = 1
M .

We modified Rangoli to comply with the restriction that the migrated capacity is
between M − ϵ and M + ϵ: when choosing one of B bins for migration, our version of

27©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Rangoli chooses only from those bins whose capacity is within the specified bounds.
For evaluation purposes, we implemented a seeding version of the greedy load bal-

ancer that was used for evaluating the capacity sketches in [HHS+19]. We refer to this
algorithm as SGreedy. In each iteration, SGreedy chooses one file from V1 to remap to
V2. The remapped file is the one which yields the best space-saving ratio, i.e., the ratio
between the space freed from V1 and that added to V2. The iterations continue until
the migrated capacity is at least M − ϵ, and if, at this point, it does not exceed M + ϵ,
a solution is returned. SGreedy returns a seeding plan in the form of a list of files that
are remapped from V1 to V2. We then use a dedicated “cost calculator” to derive the
cost of the migration plan on the original (unsampled) system.

Our calculator creates an array of the volume’s chunks and their sizes, and two bit
indicators, V1 and V2, that are initialized to false for each chunk. It then traverses the
files in the volume snapshot and updates the indicators of their blocks as follows. If
a file is remapped, then the V2 indicators of all its chunks are set to true. If a file is
not remapped, then the V1 indicators of all its chunks are set to true. A final pass over
the chunk array calculates the replication cost by summing the sizes of all the chunks
whose V1 and V2 indicators are both true. The migrated capacity is the sum of the
sizes of all the chunks whose V2 indicator is true and V1 indicator is false.

28©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

10
-1

10
-2

10
-4

20
-1

20
-2

20
-4

25
-1

25
-2

25
-4

33
-1

33
-2

33
-4

50
-1

50
-2

50
-4

0

1

2

3

4

Co
st

 (%
 re

pl
ica

te
d)

UBC-100

10
-1

10
-2

10
-4

20
-1

20
-2

20
-4

25
-1

25
-2

25
-4

33
-1

33
-2

33
-4

50
-1

50
-2

50
-4

Homes

M(%)-Epsilon(%)

Figure 6.3: GoSeed plans generated with sampling degree K=12.

6.2 Results

6.2.1 Comparison of different algorithms

We first analyze the migration cost incurred by the different algorithms on the various
volume snapshots. Figure 6.1 shows our results with three values of M (10,20,33) and
ϵ = 2. A missing bar of an algorithm indicates that it did not find a solution for that
instance. GoSeed-K and SGreedy-K depict the results obtained by these algorithms
running on a snapshot created with sampling degree K (the cost was calculated on the
original snapshot).

Rangoli does not perform well on most of the volume snapshots. It incurs the
highest replication cost on the UBC snapshots, except UBC-100 with M = 33, for
which it does not find a solution. On the FSL snapshots, it finds a good solution
only for the Homes volume with M = 33 and MacOS-Daily with M = 10, but not
for the remaining instances. The backups on the MacOS volumes share most of their
data, with a very low deduplication ratio. In these circumstances, Rangoli mostly fails
because it is unable to partition the files into separate bins of the required size.

SGreedy returns a solution in all but two instances (UBC-50 with M = 10 and
Homes with M = 33). For the UBC snapshots, the cost of its solution is 37%-87%
lower than the cost of Rangoli’s solution. When SGreedy is applied to a sampled
snapshot, as it was originally intended, this cost increases by as much as 28% and 27%,
for sample degrees 12 and 13, respectively. This increase is expected, as the sampled
snapshot “hides” some of the data sharing in the real system. However, the increase
is smaller in most instances. It is also interesting to note a few cases where SGreedy
returns a better solution (with a lower replication cost) on the sampled snapshot than
on the original one, such as for UBC-50 with M = 33. These situations can happen
when “hiding” some of the sharing helps the greedy process find a solution that it
wouldn’t find otherwise.

We can now classify our volumes into three rough categories. We refer to the

29©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100
%

 o
f b

lo
ck

s
UBC-100

all the blocks
copied blocks only

1 10 20 30 40 50 60 70 81

Homes

1 10 20 30 40 50 60 70 80 90 102

MacOS-Week

Number of files containing the block

Figure 6.4: Cumulative distribution of blocks, ranked by the number of files they are contained
in.

UBC volumes as easy—their data sharing is modest and the greedy algorithms find
good solutions for them. We refer to the Homes volume as hard—its data sharing
is substantial and the greedy algorithms mostly return solutions with high costs (up
to 29%), or don’t find a solution at all. We consider the MacOS volumes to be very
hard because of their exceptionally high degree of sharing between files. This sharing
prevents Rangoli from finding any solution with M = 20, 33, and incurs very high costs
(up to 60%) in the plan generated by SGreedy.

To explain these differences between the volumes, we ranked the blocks in each
volume according to the number of files they belong to. We then repeated this process
considering only the blocks that are copied in GoSeed’s solution with M=20%. Fig-
ure 6.4 shows the CDF for three representative volumes. In UBC-100 (Figure 6.4a),
only 7% of the blocks are contained in more than one file. This makes it relatively easy
to find a solution that minimizes the amount of data copied by the seeding plan.

In Homes (Figure 6.4b), only 7% of the blocks are contained in exactly one file,
which makes it harder to find a solution. At the same time, only 6% of the blocks
are contained in more than nine files. This corresponds to the backups of each user
included in this volume. In other words, only 6% of the blocks are contained in files
belonging to more than one user. Indeed, almost all the blocks copied in the solution
(98%) are contained in ten or more files, i.e., files belonging to at least two users. The
steps in the CDF of copied blocks, occurring at 9, 18, and 27 files, correspond to files
belonging to one, two, and three users, respectively.

Figure 6.4c shows what makes the MacOS volumes very hard. 72% of the blocks in
the MacOS-Week volume are shared by more than one file, and 46% of its blocks are
contained in all 102 files. The blocks shared by all files make up 89% of all the copied
blocks. This explains the high cost of the solutions in this volume.

GoSeed cannot find a solution for the full snapshots, which translate to ILP in-
stances with hundreds of millions of constraints. We thus use fingerprint sampling to

30©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

apply GoSeed to the volume snapshots, with two sampling degrees, 12 and 13. Our
results show that GoSeed finds a solution for all the volumes and all values of M .
It generates slightly better plans with a smaller sampling degree, when more of the
system’s constraints are manifested in the ILP instance.

In the easy (UBC) volumes, the cost of GoSeed’s migration plan is similar to that
of SGreedy’s plan on the sampled snapshots. It is higher for four instances (UBC-50
with M = 20, 33, and for UBC-100 and UBC-200 with M = 10) and equal or lower for
the rest. This shows that greedy solutions may suffice for volumes with modest data
sharing between files.

The picture is different for the hard volumes. For Homes, GoSeed consistently finds
a better migration plan, besides M=33 where Rangoli also output a good solution. Each
of the greedy algorithms finds a solution for some values of M but fails to find one for
others. The biggest gap between the greedy and optimal solutions occurs for M = 20:
SGreedy (with and without sampling) replicates approximately 23% of the volume’s
capacity, while the replication cost of the plan generated by GoSeed is only slightly
higher than 0.5%. This demonstrates a known property of greedy algorithms—their
solutions are good enough most of the time, but very bad in the worst case.

Finally, for the very hard (MacOS) volumes, GoSeed finds similar solutions and
most of the time better than the greedy algorithms. Although more than 35% of the
volume is replicated in all of the migration plans, the replication cost of GoSeed for
MacOS-Weekly with M = 10 and M = 20 is at least 8% lower than that of the greedy
algorithms. The exceptionally high degree of sharing in this volume indicates that
better solutions likely do not exist. This conclusion was supported in our attempt to
apply the “user’s” migration plan from [DJS+19], remapping the oldest backups (files,
in our case) to a new tier. In MacOS-Weekly and MacOS-Daily, remapping the single
oldest backup to a new volume resulted in migrating 0.2% and 0.3% of the volume’s
capacity, and replicating 49% and 55% of it, respectively.

Figure 6.2 shows the runtime of the different algorithms. The runtime of GoSeed
is longer than that of SGreedy on the sampled snapshot, but shorter than that of
SGreedy and Rangoli on the original snapshots. GoSeed timed out at six hours only
in one execution (UBC-500 and K = 12). The rest of the instances were solved by
GoSeed in less than one hour (UBC) or five minutes (FSL). We note, though, that
GoSeed utilizes 38 threads, while the greedy algorithms use only one. For a migration
plan transferring several TBs of data across a wide area network or a busy interconnect,
these runtimes and resources are acceptable.

6.2.2 Effect of ILP parameters

We first investigate how M and ϵ affect the solver’s ability to find a good solution.
We compare the cost of the plan generated by GoSeed with five values of M (used
in [NK13]) and three values of ϵ on an easy (UBC-100) volume and on a hard one

31©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

7 8 9 10 11 12 13
101

102

103

104
Ti

m
e

(s
ec

)
UBC-100

7 8 9 10 11 12 13

Homes

K

Figure 6.5: Solving time increases exponen-
tially with instance size (gray bars indicate
that the solver timed out).

7 8 9 10 11 12 130

2

4

6

8

10

Co
st

 (%
 re

pl
ica

te
d)

UBC-100

7 8 9 10 11 12 13

Homes

K

13.8429

Figure 6.6: Cost is hardly affected by the
sampling degree, unless the instance becomes
too large.

1
16

2
16

3
16

4
16

6
16

8
16

12
16

16
16

Portion of runtime

0

1

2

3

4

Co
st

 (%
 re

pl
ica

te
d)

UBC-100

Figure 6.7: Migration cost decreases when timeout increases (costs are shown for three
random seeds).

(Homes). The results in Figure 6.3 show that in the easy volume, higher values of
M result in a higher cost, and that this cost can be somewhat reduced by increasing
ϵ, which increases the number of feasible solutions. We observe a similar effect in
Homes, but to a much smaller extent. We note that this effect is also shared by the
greedy algorithms (not shown for lack of space), for which differences in ϵ often make
a difference between finding a feasible solution or returning without one. Increasing M

also exponentially increases the runtime of the solver—migrating more blocks results in
more feasible solutions in the search space. We omit the runtimes of this experiment,
but the effect can be observed in Figure 6.2.

We next investigate how the size of the snapshot affects the time required to solve
the ILP instance. We compare problems with similar constraints and different sizes
by generating sampled snapshots with K between 7 and 13 of the above two volumes.
Figure 6.5 shows the average runtime of GoSeed on these snapshots with M = 20 and
ϵ = 2. Error bars mark the minimum and maximum runtimes. Note that both axes are

32©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

10 20 330.0

2.5

5.0

7.5

10.0

12.5

(a) UBC-50
10 20 330.0

2.5

5.0

7.5

10.0

12.5

▾
▾

▾

▾

▾

(b) UBC-100
10 20 330.0

2.5

5.0

7.5

10.0

12.5

▾

▾

▾

▾

▾
▾

(c) UBC-200
10 20 330.0

2.5

5.0

7.5

10.0

12.5

▾

▾
▾

▾

▾
▾

(d) UBC-500

10 20 330

20

40

60

80

▾

▾

▾

▾

▾

(e) Homes
10 20 330

20

40

60

▾

▾

▾

▾

▾

▾

(f) Mac-Week
10 20 330

20

40

60

▾

▾

▾
▾

▾ ▾

(g) Mac-Daily

Rangoli
SGreedy
GoSeed-C
GoSeed-Cx2

Figure 6.8: Replication cost of container-based migration plans. For GoSeed, we present the
average of three runs (error bars indicate the maximum cost). Triangles indicate experiments
in which the solver timed out. GoSeed outperforms the greedy solutions by as much as 87%.

log-scaled—incrementing K by one doubles the number of blocks in the ILP instance.
As we expected, the time increases exponentially with the number of blocks. The figure
also shows that the runtime of the same instance with one random seed can be as much
as 1.45× longer than with another seed. We discuss the implications of this difference
below.

6.2.3 Effect of solver timeout

To evaluate the effect of timeouts on the cost of the generated plan, we generate a
volume snapshot by sampling UBC-100 with K = 8, for which the solver’s execution
time is approximately four hours. We repeatedly solve this instance (with the same
random seed) with increasing timeout values. We set the timeouts to fixed portions of
the full runtime, after having measured the complete execution. We repeat this process
for three different seeds. To eliminate the effect of sampling, we present the cost of
migration assuming the sample represents the entire system.

The results in Figure 6.7 show that the most substantial cost reduction occurs in
the first half of the execution, after which the quality of the solution does not improve
considerably. The three processes converge to the same optimal solution at different
speeds, corresponding to the different runtimes in Figure 6.5. At the same time, we

33©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

note that the largest differences in cost occur between suboptimal solutions returned
in the first half of the execution, when the solver makes most of its progress. The
cost difference is relatively small and does not exceed 22% (at 6

16)—a much smaller
difference than the difference in time required to find the optimal solution.

Gurobi provides an interface for querying the solver for intermediate results without
halting its execution. We did not use this interface because it might compromise the
accuracy of our time measurements. However, it can be used to periodically check the
rate at which the intermediate solution improves. When the rate decreases and begins
to converge, continuing the execution yields diminishing returns, and it can be halted.

6.2.4 Effect of fingerprint sampling

We evaluate the effect of the sampling degree on the cost of the solution by calculating
the costs of the plans generated for UBC-100 and Homes with M = 20, ϵ = 2, and K

between 7 and 13. Figure 6.6 shows that the difference between the cost of optimal
solutions is very small. However, when the solver times out, the cost of the suboptimal
solution can be as much as 3× higher.

Our results for varying the ILP instance parameters and sampling degrees suggest
the following straightforward heuristic for obtaining the best seeding plan within a
predetermined time frame. Generate a sample of the system with degree between 10 and
13—smaller degrees are better for smaller systems. If the solver times out, increase the
sampling degree by one. If the solver completes and there is still time, solve instances
with increasing values of ϵ until the end of the time frame is reached. This process
results in a set of solutions that form a Pareto frontier—their cost decreases as their
migrated capacity is farther from the original objective M . The final solution should
be chosen according to the design objectives of the system.

6.2.5 Efficiency of container-based plans

The container-based aggregation generates a reduced ILP instance which is an accurate
representation of the connections between files and containers. This representation can
also be used to generate container-based migration plans with Rangoli and SGreedy.
Thus, our next experiment compares the costs of GoSeed and the greedy algorithms
on the same instances. Our results in Figure 6.8 show that in these circumstances,
GoSeed can reduce the migration cost obtained by Rangoli and SGreedy by as much as
87% and 66%, respectively. These results are not surprising given the size of the ILP
instances—they consist of several hundred thousand variables, well within Gurobi’s
capabilities. As a result, even in experiments in which Gurobi times out (indicated
by the small triangles in the figure), its suboptimal solutions are considerably better
than the greedy ones. The costs with aggregated containers (GoSeed-C×2) are higher
because of the false dependencies described in Chapter 4.3.

We used our cost calculator to compare the chunk-level cost of the container-based

34©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

%
 o

f c
on

ta
in

er
s

UBC-100

all the containers
copied containers only

1 10 20 30 40 50 60 70 81

Homes

1 10 20 30 40 50 60 70 80 90 102

MacOS-Week

Number of files pointing to a container

Figure 6.9: Cumulative distribution of containers, ranked by the number of files pointing to
them.

migration plan to the greedy plans generated for the original system. For the MacOS
volumes and for UBC-50, GoSeed’s container-based plan outperforms Rangoli and is
comparable to SGreedy. However, for the larger UBC volumes and for Homes, SGreedy
and Rangoli find solutions with as much as 7.6× and 13.6× lower cost, respectively.
On these instances, Gurobi returned a suboptimal solution which was close to the
container-based optimum, but far from the chunk-based optimum. The reason are the
false dependencies, described in Chapter 4.3 and analyzed in detail in the following
section. We therefore recommend using GoSeed with container-based aggregation if
the migration is to be performed with entire containers, and with fingerprint sampling
otherwise. We summarize the main findings from our experimental results as follows.

• GoSeed combined with fingerprint sampling always finds a solution to the migration
problem. In most cases, it is the best solution in terms of cost, when compared to
the greedy algorithms.

• The solutions generated by the greedy algorithms are comparable to those of GoSeed
in volumes with modest data sharing between files.

• In general, the deduplication ratio is the major factor determining the difficulty of
the seeding problem for a given workload.

• Most of the solver’s progress towards an optimal solution occurs early in its opti-
mization stages. This supports the effectiveness of the timeout heuristic.

• When migration is performed in granularity of containers, GoSeed with container-
based aggregation is superior to the greedy algorithms. When blocks care migrated
individually, fingerprint sampling is the preferable acceleration method.

35©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
Pointers to block

0
41
82

123
164
205
246
287
328
369
410
451
492
533
574
615
656
697
738
779
820

Co
nt

ai
ne

r n
um

be
r

Distribution of pointers to blocks inside all
 containers pointed by 54 files (Homes)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 6.10: Distribution of pointers to each block within all containers with 54 files pointing
to themt.

6.3 Containers analysis

For a better understanding of the effect of sharing and false sharing in the container-
based seeding instances, we repeated the analysis in Figure 6.4 with containers instead
of blocks. Figure 6.9 shows a CDF of the number of files pointing to each container
in three representative volumes, as well as the CDF for containers copied in GoSeed’s
solution with M=20%. The UBC and MacOS containers exhibit a high degree of
false sharing. In UBC-100 (Figure 6.9a), 19% of the containers contain blocks from
more than one file, while only 7% of the blocks are contained in more than one file
(Figure 6.4a). Similarly, in MacOS-Week (Figure 6.9c), only 15% of the containers
contain blocks from one file, as opposed to 28% of the blocks that are contained in one
file (Figure 6.4c).

Homes exhibits a different behavior: the distributions of pointers to all containers, as
well as to containers copied in the solution (Figure 6.9b) are similar to the distribution
of files containing each block (Figure 6.4b)—more than 88% of copied containers include
blocks from at most nine files, i.e., belonging to a single user. This is counter-intuitive:
the optimal seeding plan divides the users between the source and destination volumes—
it does not split a user’s file between the volumes. Thus, blocks contained in at most
one user’s files should not be copied as part of an optimal solution. However, the
container-based solution is not optimal. In this instance, the solver timed out and
returned a sub-optimal solution, which explains this copying as well as its high cost.

Collocating blocks from different files in the same container does not only interfere
with optimal seeding plans. Previous studies addressed this false sharing in the context
of efficient I/O during the restore process. One approach to reduce the number of files
pointing to each container is to enforce an explicit limitation. When the number of
files with blocks in the container exceed this limit, new files containing blocks in this

36©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

%
 o

f n
ew

 c
on

ta
in

er
s

UBC-100

1 10 20 30 40 50 60 70 81

Homes

1 10 20 30 40 50 60 70 80 90 102

MacOS-Week

File number

Figure 6.11: Percent of new containers within the containers pointed by each file.

container will result in additional physical copies of these blocks [LEB13]. Another
approach is to limit the “distance’’ (difference in creation times) between files pointing
to each container. In other words, new files cannot point to blocks in containers that
were created too long ago [FFH+14].

We first examined the effect of the number of pointers to a container on its degree of
false sharing. For a container with p pointers, we calculated the percentage of its blocks
pointed to by i files, for 1 ≤ i ≤ p. We repeated this analysis for all the containers
in each volume, and aggregated the results by p. Figure 6.10 shows the results of all
the containers with 54 pointers in Homes. The results are presented as a heat map,
with the number of pointers in the X axis, the container ID in the Y axis, and the
color representing the percentage of the container’s blocks. On average, only 50% of
the blocks in each container belong to all the files pointing to this container, and only
68% of the blocks are contained in 47 files or more. A large portion of the blocks are
contained in much fewer files, creating the effects of false sharing described above.

This analysis yielded similar results on containers from other volumes and with a
different number of pointers. They imply that even when the number of files pointing
to each container is limited, we can still expect a high rate of false sharing within
individual containers. Thus, such a limitation is not likely to eliminate the effect of
false-sharing.

Figure 6.11 shows the percentage of each file’s containers that are new, i.e., contain-
ers created while ingesting this file. Each file in UBC-100 (Figure 6.11a) is a snapshot
of a different user’s home directory. The percentage of new containers in each snap-
shot is between 1% to 89%. The snapshots in Homes (Figure 6.11b) were processed
chronologically. The first day contained snapshots of nine different home directories,
resulting in a considerable percentage of new containers. The following eight days con-
tained weekly backups of these directories, which contained a low percentage of new
data, and respectively few containers. In MacOS-Week (Figure 6.11c), which contains
102 weekly backups of the same server, almost all of the data in each file is a duplicate

37©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

of data already in the system.
In all these volumes, limiting the distance between containers pointed to by a

single file would clearly reduce the dependencies between files. However, as noted
in [FFH+14], this will also increase the physical size of the volume. This increase is a
valid tradeoff when it comes to improving restore performance. However, for the pur-
poses of data migration, there is no reason to increase the physical size before migration
only for the purpose of minimizing the effect of migration.

In summary, false sharing is inevitable when aggregating blocks into containers. The
analyses presented in this chapter were performed on volumes that have not experienced
any file deletions. When files are deleted, garbage collection is triggered to reclaim
physical space in old containers. This process aggregates otherwise unrelated blocks
into containers, and is likely to further increase the degree of false sharing, beyond
what is shown in our analysis. Thus, container-based solutions in such systems should
be used only when the migration itself is performed in the granularity of containers,
for reasons such as I/O efficiency or reduced computation.

38©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 7

Discussion

Data migration within a large-scale deduplicated system can reallocate tens of terabytes
of data. This data is possibly transferred over a wide area network or a busy inter-
connect, and some of it may be replicated as a result. The premise of our research is
that the potentially high costs of data migration justify solving a complex optimization
problem with the goal of minimizing these costs.

Thus, in contrast to existing greedy heuristics to this hard problem, GoSeed at-
tempts to solve it. By formulating data migration as an ILP instance, GoSeed can
“hide” its complexity by leveraging off-the-shelf highly optimized solvers. This ap-
proach is independent of specific design and implementation details of the deduplica-
tion system or the ILP solver. However, it introduces an inherent tradeoff between the
time spent generating a seeding plan, and the cost of executing it. As this cost depends
on the system’s characteristics, such as network speed, cost of storage, and read and
restore workload, the potential for cost saving by GoSeed is system dependent as well.

Our evaluation showed that the benefit of GoSeed is high in two scenarios. The
first is when the problem’s size allows the solver to find the optimal (or near optimal)
solution within the allocated time. Container-based migration is an example of this
case, where GoSeed significantly reduced the migration cost of the greedy algorithms.
The second case is when a high degree of data sharing in the system makes it hard for
the greedy solutions to find a good migration plan, causing them to produce a costly
solution or no solution at all. At the same time, for systems with low or exceptionally
high degrees of data sharing, the greedy solutions and that of GoSeed are comparable.

Accurately identifying the large instances for which GoSeed would significantly
improve on the greedy solution is not straightforward, and requires further research.
Fortunately, a simple hybrid approach can provide ‘the best of both worlds’: one can
run the greedy algorithm, followed by GoSeed, and execute the migration plan whose
cost is lower.

39©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

7.1 Generalizations

Seeding is the simplest form of data migration in large systems. A natural next step to
this work is to generalize our ILP-based approach to more complex migration scenarios,
such as migration into a non-empty volume, and migration where both source and target
volumes are chosen as part of the plan. Each generalization introduces additional
aspects, and might require reformulating not only the ILP constraints, but also its
objective function.

For example, when the destination volume is not empty, the optimal migration plan
can be the one that minimizes the total storage capacity on the source and destination
volumes combined. An alternative formulation might minimize the total amount of data
that must be transferred from the source volume to the destination. In the most general
case, generating the migration plan also entails determining either the source or the
destination volume, or both, such that the migration goal is achieved and the objective
is optimized. Data migration in general introduces additional objectives, such load
balancing between volumes, or optimizing the migration process under certain network
conditions and limitations. The problem can be further extended by allowing some files
to be split between volumes, introducing a new tradeoff between the cost of migration
and that of file access.

The ILP formulation of these problems will result in considerably more complex
instances than those of the seeding problem. As a result, we might need to apply our
acceleration methods more aggressively, e.g., by increasing the fingerprint sampling
degree, or construct new methods. Thus, each generalization of the seeding problem
introduces non-trivial challenges as well as additional tradeoffs between the solving
time and the cost of migration.

40©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 8

Conclusions

We presented GoSeed, an algorithm for generating theoretically optimal seeding plans in
deduplicated systems, and three acceleration methods for applying it to realistic storage
volumes. Our evaluation demonstrated the effectiveness of the acceleration methods:
GoSeed can produce an optimal seeding plan on a sample of the system in less than
an hour, even in cases where the greedy solutions do not find a feasible solution to the
problem. When executed on the original system, GoSeed’s solution is not theoretically
optimal, but it can substantially reduce the cost of the greedy solutions.

Finally, our formulation of data migration as an ILP problem, combined with the
availability of numerous ILP solvers, opens up new opportunities for additional contri-
butions in this domain, and for making data migration more efficient.

We thank our shepherd, Dalit Naor, and the anonymous reviewers, for their helpful
comments. We thank Sharad Malik for his insightful suggestions, and Yoav Etsion
for his invaluable help with the evaluation infrastructure. We thank Polina Manevich,
Michal Amsterdam, Nadav Levintov, Benny Lodman, Matan Levy, Yoav Zuriel, Shai
Zeevi, Eliad Ben-Yishai, Maor Michaelovitch, Itai Barkav, and Omer Hemo for their
help with the implementation and with processing the traces.

41©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

42©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Appendix A

Hardness proof

We now explain why the seeding problem is most likely intractable. First, we define the
(m, ϵ, r)-block move problem which is the decision problem corresponding to our seeding
optimization problem. We also define the (k, m)-full cover problem. Second, we show a
polynomial-time reduction from the k-clique problem to the (k, m)-full cover problem.
Since the k-clique problem is NP-complete the conclusion here is that the (k, m)-full
cover problem is also NP-complete. Third, we show a polynomial-time reduction from
the (k, m)-full cover problem to the (m, ϵ, r)-block move problem. Since the (k, m)-
full cover problem is NP-complete the final conclusion is that the (m, ϵ, r)-block move
problem is NP-complete.

Definition. Let G = ⟨V, E⟩ be an undirected graph. We say that a set V ′ ⊆ V is a
full cover of E′ ⊆ E if for every (u, v) ∈ E′, it holds that u, v ∈ V ′. We then also say
that E′ is fully covered by V ′.

The (k, m)-full cover problem is to decide, given G and k, m ∈ N whether there
exists a subset of vertices V ′ of size at most k that fully covers at least m edges.

Definition. Let B be a set of blocks, let s : B → N be a size function which assigns
every block b a size s(b), let F be a set of files, and let C ⊆ F ×B be a set of inclusions,
where ⟨f, b⟩ ∈ C means that block b is in file f . A block b is moved only if every file that
contains b is remapped. A block b is replicated only if at least one file that contains b

is remapped and at least one file that contains b is not remapped.
The (m, ϵ, r)-block move problem is to decide whether there exists a set of files

whose remap will move blocks whose total size is at least m − ϵ and at most m + ϵ,
such that the total size of block replication will not exceed r.

Theorem 1. The (k, m)-full cover problem is NP-complete.
Proof of Theorem 1: It is easy to see that the problem is in NP. Indeed, given a

set of k vertices its easy to verify whether they cover at least m edges. To show that
the problem is NP-hard, we show a reduction from the k-clique problem. Given G and
k, the reduction returns G,k and m =

(k
2
)
. Obviously, the reduction is polynomial. To

prove correctness, given an undirected graph G = ⟨V, E⟩, there exists a clique of size
(at least) k iff there exist V ′ of size at most k and E′ of size (at least)

(k
2
)

such that V ′

43©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

𝑔

𝑓 𝑢,𝑣1

𝑣1

𝑓 𝑢,𝑣1
𝑢

𝑏(𝑢1,𝑣1)
1

𝑏(𝑢1,𝑣1)
2

𝑏𝑒 𝐸
1

𝑏𝑒 𝐸
2

𝑏𝑣1

𝑏𝑢

𝑏𝑣 𝑣

𝑏(𝑢,𝑣1)

𝑏𝑒 𝐸

Figure A.1: An illustration of the (k, m)-full cover → (m, ϵ, r)-block move reduction.

is a full cover of E′ in G.

• For the first direction, if V ′ is a clique of size k, then it spans
(k

2
)

edges, and
obviously covers them all from both sides.

• For the second direction, suppose that V ′ of size at most k covers E′ of size at
least

(k
2
)
. The maximal number of edges for which both sides are in V ′ is

(k
2
)
,

since between two vertices there is at most one edge. If
(k

2
)

is the minimal number
of edges that V ′ covers then |E′| =

(k
2
)

and there exists an edge between every
two vertices in V ′. The conclusion is that V ′ is a clique of size k.

Note that with the same reduction we can prove that a variant of this problem, where
m is a strict requirement (rather than a lower bound), is also NP-complete.

Theorem 2. the (m, ϵ, r)-block move problem is NP-complete.
Proof of Theorem 2: It is easy to see that the problem is in NP. Indeed, given a

set of files, it is easy to verify that remapping them will move blocks with accumulated
size in the range of m− ϵ to m+ ϵ, and that the block replication is at most r. To show
that the problem is NP-hard, we show a reduction from the (k, m)-full cover problem,
illustrated in figure A.1. Given a graph G = ⟨V, E⟩ with n vertices and t edges and
numbers k, m′, we construct a file system as follows. The set of blocks (B) comprises:

• A block bv for every v ∈ V

44©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

• A block be for every e ∈ E

• Blocks b1
e, b2

e for every e ∈ E

We set s(b) = 1 for every b ∈ B (all blocks are of size 1). The set of files (F) comprises:

• A file labeled g

• Two files fu
(u,v), fv

(u,v) for every edge (u, v) ∈ E

The set of inclusions (C) comprises:

• (bv, g) for every v ∈ V

• (b1
e, g), (b2

e, g) for every e ∈ E, i.e., g contains 2|E| + |V | blocks.

• (be, fu
(u,v)), (be, fv

(u,v)) for every e = (u, v) ∈ E

• (bv, fv
(u,v)) for every v ∈ V and u ∈ V s.t (u, v) ∈ E, i.e., overall the file fv

(u,v)
contains 2 blocks.

Given an undirected graph G = ⟨V, E⟩, there exist V ′ of size k and E′ of size m′

such that V ′ is a full cover of E′ in G iff in the file system we described above there
exists a set of files whose remapping will move blocks with accumulated size of m′ and
block replication is at most k. That is, for the (m, ϵ, r)-block move problem, we set
ϵ = 0, m = m′, r = k.

• For the first direction, suppose that there exists a set V ′ s.t |V ′| = k that covers
E′ where |E′| = m′. We remap the set of files F ′ = {fu

(u,v), fv
(u,v)|(u, v) ∈ E′}.

Accordingly the set of blocks that is moved is Bm = {(be|e = (u, v), fu
(u,v) ∈ F ′}

and |Bm| = |E′| = m′. Additionally, Br = {bv|fv
(u,v) ∈ F ′} is the set of blocks

that is replicated due to the remapping of F ′ and |Br| = |V ′| = k. Therefore, F ′

is a solution to the m′, 0, k-block move problem.

• For the second direction, suppose there exists a set F ′ ⊆ F such that remapping
F ′ moves exactly m′ blocks and replicates exactly k blocks. According to Lemma
1 below we know that Bm contains only blocks of the type be. We claim that
F ′ = {fu

(u,v), fv
(u,v)|(u, v) = e, be ∈ Bm}. Since Br contains blocks that are con-

tained in at least one file that is being remapped and at least one file that is not
remapped, we have that Br = {bv|fv

(u,v) ∈ F ′}. Let V ′ = {v|fv
(u,v) ∈ F ′} and

E′ = {(u, v)|fv
(u,v) ∈ F ′}. It holds that V ′ covers E′ since for every (u, v) ∈ E′

there exists fv
(u,v), fu

(u,v) ∈ F ′ and thus u, v ∈ V ′. Additionally, |V ′| = |Br| = k

and |E′| = |Bm| = m′. Therefore, V ′, E′ is a solution to the (k, m′)-full cover
problem.

Lemma 1: Only blocks of the form be can be moved under the restrictions of m = m′

and r = k. Proof of Lemma 1: Suppose, by way of contradiction that a block of the

45©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

form bv or b1
e or b2

e is moved. Any of these three cases will cause file g to be remapped.
Indeed, remapping g leads to either moving or replicating each of its 2|E| + |V | blocks,
thus exceeding m + r. Therefore, only blocks of the type be can be moved

46©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Bibliography

[AAA+10] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula Balachandran,
Pushkar Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and
George Varghese. EndRE: An end-system redundancy elimination service
for enterprises. In 7th USENIX Conference on Networked Systems Design
and Implementation (NSDI 10), 2010.

[Aba89] Jeph Abara. Applying integer linear programming to the fleet assignment
problem. Interfaces, 19(4):20–28, 1989.

[ADK+18] Yamini Allu, Fred Douglis, Mahesh Kamat, Ramya Prabhakar, Philip
Shilane, and Rahul Ugale. Can’t we all get along? Redesigning protec-
tion storage for modern workloads. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), 2018.

[AHH+01] Eric Anderson, Joseph Hall, Jason D. Hartline, Michael Hobbs, Anna R.
Karlin, Jared Saia, Ram Swaminathan, and John Wilkes. An experimen-
tal study of data migration algorithms. In 5th International Workshop
on Algorithm Engineering (WAE 01), 2001.

[AHK+02] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa
Uysal, and Alistair Veitch. Hippodrome: Running circles around storage
administration. In 1st USENIX Conference on File and Storage Tech-
nologies (FAST 02), 2002.

[AKS+02] Eric Anderson, Mahesh Kallahalla, Susan Spence, Ram Swaminathan,
and Qiang Wan. Ergastulum: quickly finding near-optimal storage system
designs. HP Laboratories, June 2002.

[BCQ+13] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and
Paulo Sousa. DepSky: Dependable and secure storage in a cloud-of-
clouds. ACM Transactions on Storage, 9(4):12:1–12:33, November 2013.

[BELL09] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long, and Mark Lillib-
ridge. Extreme binning: Scalable, parallel deduplication for chunk-based
file backup. In IEEE International Symposium on Modeling, Analysis

47©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Simulation of Computer and Telecommunication Systems (MASCOTS
09), 2009.

[CAVL09] Austin T. Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li.
Decentralized deduplication in SAN cluster file systems. In 2009 Confer-
ence on USENIX Annual Technical Conference (USENIX 09), 2009.

[CLZ11] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL: A content-aware
flash translation layer enhancing the lifespan of flash memory based solid
state drives. In 9th USENIX Conference on File and Stroage Technologies
(FAST 11), 2011.

[CPL] CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer.
Accessed: 2019-12-29.

[CWC+14] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen, Haiyang Pan, and
Yungang Bao. CMD: Classification-based memory deduplication through
page access characteristics. In 10th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE 14), 2014.

[Dan63] George B. Dantzig. Linear programming and extensions. Rand Corpora-
tion Research Study. Princeton Univ. Press, Princeton, NJ, 1963.

[DBQS11] Fred Douglis, Deepti Bhardwaj, Hangwei Qian, and Philip Shilane.
Content-aware load balancing for distributed backup. In 25th Interna-
tional Conference on Large Installation System Administration (LISA
11), 2011.

[DDL+11] Wei Dong, Fred Douglis, Kai Li, Hugo Patterson, Sazzala Reddy, and
Philip Shilane. Tradeoffs in scalable data routing for deduplication clus-
ters. In 9th USENIX Conference on File and Stroage Technologies (FAST
11), 2011.

[DDS+17] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony Wong, Shiqin Yan,
and Fabiano Botelho. The logic of physical garbage collection in dedupli-
cating storage. In 15th USENIX Conference on File and Storage Tech-
nologies (FAST 17), 2017.

[DGH+09] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wo-
jciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Un-
gureanu, and Michal Welnicki. HYDRAstor: A scalable secondary stor-
age. In 7th Conference on File and Storage Technologies (FAST 09),
2009.

[DJS+19] Abhinav Duggal, Fani Jenkins, Philip Shilane, Ramprasad Chinthekindi,
Ritesh Shah, and Mahesh Kamat. Data Domain Cloud Tier: Backup

48©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://www.ibm.com/analytics/cplex-optimizer

here, backup there, deduplicated everywhere! In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019.

[DSL10] Biplob Debnath, Sudipta Sengupta, and Jin Li. ChunkStash: Speeding
up inline storage deduplication using flash memory. In 2010 USENIX
Conference on USENIX Annual Technical Conference (USENIX ATC
10), 2010.

[EMC15] EMC Corporation. INTRODUCTION TO THE EMC XtremIO STOR-
AGE ARRAY (Ver. 4.0), rev. 08 edition, April 2015.

[FFH+14] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia, Fangting
Huang, and Qing Liu. Accelerating restore and garbage collection in
deduplication-based backup systems via exploiting historical information.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014.

[FS13] Jingxin Feng and Jiri Schindler. A deduplication study for host-side
caches in virtualized data center environments. In 29th IEEE Symposium
on Mass Storage Systems and Technologies (MSST 13), 2013.

[FSL] Traces and snapshots public archive. http://tracer.filesystems.org/. Ac-
cessed: 2019-12-29.

[GE11] Fanglu Guo and Petros Efstathopoulos. Building a high-performance
deduplication system. In 2011 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC 11), 2011.

[GLV+08] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C.
Snoeren, George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Dif-
ference engine: Harnessing memory redundancy in virtual machines. In
8th USENIX Conference on Operating Systems Design and Implementa-
tion (OSDI 08), 2008.

[GNU] GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/
glpk/. Accessed: 2019-12-29.

[GPUS11] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Siva-
subramaniam. Leveraging value locality in optimizing NAND flash-based
SSDs. In 9th USENIX Conference on File and Stroage Technologies
(FAST 11), 2011.

[Gur] The fastest mathematical programming solver. http://www.gurobi.com/.
Accessed: 2019-12-29.

[HHS+19] Danny Harnik, Moshik Hershcovitch, Yosef Shatsky, Amir Epstein, and
Ronen Kat. Sketching volume capacities in deduplicated storage. In 17th
USENIX Conference on File and Storage Technologies (FAST 19), 2019.

49©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

http://tracer.filesystems.org/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://www.gurobi.com/

[HKS16] Danny Harnik, Ety Khaitzin, and Dmitry Sotnikov. Estimating unseen
deduplication-from theory to practice. In 14th Usenix Conference on File
and Storage Technologies (FAST 16), 2016.

[HPSP10] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side chan-
nels in cloud services: Deduplication in cloud storage. IEEE Security
Privacy, 8(6):40–47, Nov 2010.

[IG06] Charles B. Morrey III and Dirk Grunwald. Content-based block caching.
In 23rd IEEE Symposium on Mass Storage Systems and Technologies
(MSST 06), 2006.

[Kar72] R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–
103. Plenum Press, 1972.

[KBKD12] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kilian, and Cezary
Dubnicki. Reducing impact of data fragmentation caused by in-line dedu-
plication. In Proceedings of the 5th Annual International Systems and
Storage Conference (SYSTOR 12), 2012.

[LAW02] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online
data migration with performance guarantees. In 1st USENIX Conference
on File and Storage Technologies (FAST 02), 2002.

[LCL+14] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick PC Lee, and
Wenjing Lou. Secure deduplication with efficient and reliable conver-
gent key management. IEEE Transactions on Parallel and Distributed
Systems, 25(6):1615–1625, June 2014.

[LEB+09] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar,
Greg Trezise, and Peter Camble. Sparse indexing: Large scale, inline
deduplication using sampling and locality. In 7th Conference on File and
Storage Technologies (FAST 09), 2009.

[LEB13] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. Improving re-
store speed for backup systems that use inline chunk-based deduplication.
In 11th USENIX Conference on File and Storage Technologies (FAST 13),
2013.

[LLD+14] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wal-
lace. Migratory compression: Coarse-grained data reordering to improve
compressibility. In 12th USENIX Conference on File and Storage Tech-
nologies (FAST 14), 2014.

50©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

[lps] Introduction to lp_solve 5.5.2.5. http://lpsolve.sourceforge.net/5.5/. Ac-
cessed: 2019-12-29.

[LSD+14] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone,
and Grant Wallace. Nitro: A capacity-optimized SSD cache for primary
storage. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), 2014.

[Man94] Udi Manber. Finding similar files in a large file system. In USENIX
Winter 1994 Technical Conference (WTEC 94), 1994.

[MB11] Dutch T. Meyer and William J. Bolosky. A study of practical deduplica-
tion. In 9th USENIX Conference on File and Stroage Technologies (FAST
11), 2011.

[MCM01] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-
bandwidth network file system. In 18th ACM Symposium on Operating
Systems Principles (SOSP 01), 2001.

[MHS18] Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shinagawa. The
quick migration of file servers. In 11th ACM International Systems and
Storage Conference (SYSTOR 18), 2018.

[MKB+12] Dirk Meister, Jürgen Kaiser, Andre Brinkmann, Toni Cortes, Michael
Kuhn, and Julian Kunkel. A study on data deduplication in HPC storage
systems. In International Conference on High Performance Computing,
Networking, Storage and Analysis (SC 12), 2012.

[NK13] P. C. Nagesh and Atish Kathpal. Rangoli: Space management in dedu-
plication environments. In 6th International Systems and Storage Con-
ference (SYSTOR 13), 2013.

[NLP+11] Youngjin Nam, Guanlin Lu, Nohhyun Park, Weijun Xiao, and David
H. C. Du. Chunk fragmentation level: An effective indicator for read
performance degradation in deduplication storage. In 2011 IEEE Interna-
tional Conference on High Performance Computing and Communications
(HPCC 11), 2011.

[RH02] A. Richards and J. P. How. Aircraft trajectory planning with collision
avoidance using mixed integer linear programming. In Proceedings of the
2002 American Control Conference (IEEE Cat. No.CH37301), volume 3,
pages 1936–1941, May 2002.

[SBGV12] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti.
iDedup: Latency-aware, inline data deduplication for primary storage. In

51©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

http://lpsolve.sourceforge.net/5.5/

10th USENIX Conference on File and Storage Technologies (FAST 12),
2012.

[SCJ16] Philip Shilane, Ravi Chitloor, and Uday Kiran Jonnala. 99 deduplication
problems. In 8th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 16), 2016.

[SGLM08] Mark W. Storer, Kevin Greenan, Darrell D.E. Long, and Ethan L. Miller.
Secure data deduplication. In ACM International Workshop on Storage
Security and Survivability (StorageSS ’08), 2008.

[SK12] Prateek Sharma and Purushottam Kulkarni. Singleton: System-wide
page deduplication in virtual environments. In 21st International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC
12), 2012.

[SKM+16] Zhen Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily
Tarasov, Nong Xiao, and Erez Zadok. A long-term user-centric analysis
of deduplication patterns. In 32nd Symposium on Mass Storage Systems
and Technologies (MSST 16), 2016.

[SNI] SNIA IOTTA Repository. http://iotta.snia.org/tracetypes/6. Accessed:
2019-12-29.

[STFG08] John D. Strunk, Eno Thereska, Christos Faloutsos, and Gregory R.
Ganger. Using utility to provision storage systems. In 6th USENIX
Conference on File and Storage Technologies (FAST 08), 2008.

[SYM] SYMPHONY development home page. https://projects.coin-or.org/
SYMPHONY. Accessed: 2019-12-29.

[TAB11] Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakrishnan. Online mi-
gration for geo-distributed storage systems. In 2011 USENIX Conference
on USENIX Annual Technical Conference (USENIX ATC 11), 2011.

[TMB+12] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuen-
ning, and Erez Zadok. Generating realistic datasets for deduplication
analysis. In 2012 USENIX Annual Technical Conference (USENIX ATC
12), 2012.

[Wal02] Carl A. Waldspurger. Memory resource management in VMware ESX
server. ACM SIGOPS Operating Systems Review - OSDI ’02, 36(SI):181–
194, December 2002.

[WDQ+12] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen
Smaldone, Mark Chamness, and Windsor Hsu. Characteristics of backup

52©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

http://iotta.snia.org/tracetypes/6
https://projects.coin-or.org/SYMPHONY
https://projects.coin-or.org/SYMPHONY

workloads in production systems. In 10th USENIX Conference on File
and Storage Technologies (FAST 12), 2012.

[XJF+14] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou.
Ddelta: A deduplication-inspired fast delta compression approach. Per-
formance Evaluation, 79:258 – 272, 2014. Special Issue: Performance
2014.

[XTL+18] Nai Xia, Chen Tian, Yan Luo, Hang Liu, and Xiaoliang Wang. UKSM:
Swift memory deduplication via hierarchical and adaptive memory region
distilling. In 16th USENIX Conference on File and Storage Technologies
(FAST 18), 2018.

[XZJ+16] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu,
Qing Liu, and Yucheng Zhang. FastCDC: A fast and efficient content-
defined chunking approach for data deduplication. In 2016 USENIX An-
nual Technical Conference (USENIX ATC 16), 2016.

[YJTL16] Zhichao Yan, Hong Jiang, Yujuan Tan, and Hao Luo. Deduplicating com-
pressed contents in cloud storage environment. In 8th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 16), 2016.

[zCWWD18] zhichao Cao, Hao Wen, Fenggang Wu, and David H.C. Du. ALACC:
Accelerating restore performance of data deduplication systems using
adaptive look-ahead window assisted chunk caching. In 16th USENIX
Conference on File and Storage Technologies (FAST 18), 2018.

[ZLP08] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck
in the Data Domain deduplication file system. In 6th USENIX Conference
on File and Storage Technologies (FAST 08), 2008.

[ZSW16] Yanhua Zhang, X. Sun, and Baowei Wang. Efficient algorithm for k-
barrier coverage based on integer linear programming. China Communi-
cations, 13(7):16–23, July 2016.

[ZWM12] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik.
Coverage-based trace signal selection for fault localisation in post-silicon
validation. In Hardware and Software: Verification and Testing - 8th
International Haifa Verification Conference (HVC 12), 2012.

53©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

,(ILP-integer linear programming) בשלמים לינארי תכנון בעיית בתור הזריעה בעיית אופטימיזציית

הלינארי התכנון שבעיית למרות המידע. פיסות של ההעתקה את תייצג למזער שנרצה הפונקציה כאשר

פתוח קוד מבוססי חלקם כלים, של רחב מגוון קיים פולינומי, לחישוב כקשה כן גם ידועה בשלמים

מערכות של גודלן לאור ביעילות. יחסית היוריסטיקות מבוסס פתרון לתת שיודעים מסחריים, וחלקם

מאות תכיל הזריעה בעיית מתוך שתיגזר בשלמים לינארי התכנון בעיית האמיתי, בעולם האחסון

פתרון יתנו כלים אותם עבורן בעיות של הגודל לסדר מעבר הרבה - ואילוצים משתנים של מיליונים

סביר. בזמן

אחד מצד האצה: שיטות של קבוצה מציעים אנחנו למצוי הרצוי בין פערים אותם את לצמצם מנת על

התאורטית האופטימליות את נאבד שני מצד אבל כלים, לאותם הדרוש הריצה זמן את לצמצם נצליח

שהגדרנו, האצה שיטות שלוש מתוארות העבודה בהמשך טוב". "מספיק בפתרון להסתפק ונצטרך שלנו

הפתרון מציאת לפני הכלי את לעצור האפשרות על מבוססת הראשונה השיטה ביצועיהן. את וניתחנו

הפתרון של מזו גבוהה שעלותו ייתכן אך קביל, זריעה פתרון הוא המתקבל הפתרון – האופטימלי

דגימה באמצעות הבעיה הקטנת על מבוססות האחרות השיטות שתי הריצה. בסוף מתקבל שהיה

אל אותה מזינים בשלמים לינארי התכנון לבעיית המוקטנת הבעיה את ממירים אנו בהתאמה. ואיחוד,

מתקבל אלה בשיטות המקורית. הזריעה בעיית עבור פתרון מסיקים אנחנו הכלי של ומהתוצאה הכלי

המקורית לבעיה המתאים שהפתרון מובטח לא אך המקורית, הבעיה של לקירוב אופטימלי פתרון

לפתרון תעשייתי כלי שהוא [Gur] Gurobi בעזרת GoSeed את מימשנו עבורה. האופטימלי אכן הוא

זריעה לבעיות פתרון מצאנו וגם שלנו האצה שיטות את מימשנו בנוסף, בשלמים. לינארי תכנון בעיות

מציג היתר בין שלנו המעמיק הניתוח . [MB11, FSL] דדופליקציה מבוססות אמתיות מערכות עבור

עם יחסית, קלות הנחשבות בעיות עבור הזריעה. לבעיית שהוצגו החמדניים הפתרונות מגבלות את

יותר מסובכות בעיות עבור אך טובים, פתרונות מוצאות החמדניות השיטות נמוך, דדופליקציה יחס

יותר. לעדיפות הופכות המקרים ברוב GoSeed של הפתרונות יותר, גבוה הדדופליקציה יחס עם

ii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

תקציר

המאוחסן המידע נפח לצמצום ביותר היעילות הדרכים אחת היא (deduplication) דדופליקציה

שונים, בקבצים זהות מידע פיסות מזהים שבה שיטה היא דדופליקציה גדולות. אחסון במערכות

פיסת אותה של נוסף עותק כל מידע. פיסת כל של אחד פיזי עותק רק האחסון בשרת ומאחסנים

האחסון נפח את מצמצמת אכן דדופליקציה בדיסק. הפיזית המידע פיסת אל במצביע יוחלף מידע

במערכות במיוחד המידע, של הניהול תהליך את מסבכת גם היא אך שלנו, המידע על לשמירה הדרוש

בצורה כסף גביית והוגנת, יעילה בצורה לקוחות שירות המידע, גודל שערוך כמו ניהול פעולות גדולות-

וכו'. שלהם המידע עבור מהלקוחות מדויקת

data נתונים" "הגירת היא דדופליקציה בעקבות יותר מסובכת שהופכת ניהול לפעולת נוספת דוגמה

פעולה כלל בדרך אחר. לשרת והעברתו מסוים בשרת הפיזי המידע מן חלק בחירת -migration
מסוים. לשרת או למערכת שמוקצה האחסון נפח משינוי או עומסים איזון מתהליך כחלק נדרשת זאת

קבוצת בין המידע שיתוף שכן להעברה, המתאימים הקבצים בחירת תהליך את מסבכת דדופליקציה

חד באופן קובעים במערכת), הקבצים שאר (כל לה המשלימה והקבוצה להעברה, המיועדת הקבצים

העברת של יעיל תכנון בהתאמה. והמקור, היעד בשרתי יתפוס שהמידע המקום גודל את משמעי

את הניתן ככל ימזער שני ומצד הנדרשת, הכמות פי על המקור שרת תפוסת יוריד אחד מצד מידע

בעיית של בעיה תת שהיא ,(seeding) ה"זריעה" בעיית היעד. בשרת המועבר המידע שידרוש המקום

זאת בעיה אחרות, במילים יעיל. לחישוב קשה העברה, לפני מתוכן ריק היעד שרת בה המידע העברת

.NP-Hard במחלקה נמצאת דדופליקציה עם במערכות

האקדמי בעולם מעט לא נחקרו דדופליקציה עם במערכות הזריעה ובעיית הנתונים הגירת בעיית

בתעשייה. מידע אחסון מערכות של ארכיטקטורה על שלהן הישירה להשפעה הודות האחרונות בשנים

בעוד כללי, באופן נתונים הגירת עבור הנתונים נפח שערוך בבעית מטפלים [HHS+19] ושות' Harnik
Rangoli קיימת. מערכת עבור בענן אחסון יחידת של זריעה מתארים [DJS+19] ושות' Duggal
כל הזריעה. לבעיית שקולה בעיה – דדופליקציה עם ממערכת נתונים לפינוי שיטה היא [NK13]
של היעילות כך היעד, לשרת שיועברו הקבצים לבחירת חמדניות שיטות מציעים האמורים המחקרים

מעולם. שיטתית בצורה הושוותה לא המתקבלים הפתרונות

כמה עד ברור לא בעיות, אותן על התאוריה מתחום במחקרים גדול חסך שיש העובדה לאור בנוסף,

לבעיית תאורטי בסיס להקנות היא: המחקר מטרת בכלל. אם הקיימות, התוצאות את לשפר ניתן

ניתוח ולספק אמיתיות מערכות עבור פתרונות למציאת מימושי בסיס לבנות הפתרון, ושיטת הזריעה

מכיר. והתעשייתי האקדמי שהעולם טובות הכי השיטות לצד השיטה השפעת של מעמיק

את מפרמלים אנחנו החדשה בגישה הזריעה. בעיית לפתרון חדשה גישה ,GoSeed את מציגים אנחנו

i©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

טאוב. ומרילין הנרי ע"ש המחשב למדעי בפקולטה ידגר, גלה דר' של בהנחייתה בוצע המחקר

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המאסטר מחקר תקופת במהלך

Aviv Nachman, Gala Yadgar, and Sarai Sheinvald. GoSeed: Generating an optimal seeding
plan for deduplicated storage. In 18th USENIX Conference on File and Storage Technologies
(FAST 20), pages 193–207, Santa Clara, CA, February 2020. USENIX Association.

תודות

עבודת כל לאורך והתמיכה העידוד ההנחיה, על ידגר, גלה דר' שלי למנחה להודות ברצוני

זה. בפרוייקט החשובה עזרתם על קוליקנט ואריאל שינולד לשרי להודות ארצה בנוסף המגיסטר.

האהובים להורי ובמיוחד המתמשכת ואהבתם תמיכתם על ולחברי למשפחתי להודות ארצה לסיום

הדרך. אורך לכל בשבילי שם שהיו וסיגלית ירון

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

מבוססות אחסון במערכות מידע ניהול
דדופליקציה

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

נחמן אביב

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2020 אוקטובר חיפה התשפ"א חשוון

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

מבוססות אחסון במערכות מידע ניהול
דדופליקציה

נחמן אביב

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Background and Related Work
	2.1 Deduplication
	2.2 Data migration
	2.3 Existing data migration approaches
	2.4 Integer linear programming (ILP)

	3 GoSeed ILP optimization
	3.1 Problem definition and hardness
	3.2 ILP formulation
	3.3 Refinements
	3.4 Complexity

	4 GoSeed Acceleration Methods
	4.1 Solver timeout
	4.2 Fingerprint sampling
	4.3 Container-based aggregation

	5 Implementation
	6 Evaluation
	6.1 Experimental setup
	6.1.1 Deduplication snapshots
	6.1.2 Evaluation platform
	6.1.3 Comparison to existing approaches

	6.2 Results
	6.2.1 Comparison of different algorithms
	6.2.2 Effect of ILP parameters
	6.2.3 Effect of solver timeout
	6.2.4 Effect of fingerprint sampling
	6.2.5 Efficiency of container-based plans

	6.3 Containers analysis

	7 Discussion
	7.1 Generalizations

	8 Conclusions
	A Hardness proof
	Bibliography
	Hebrew Abstract

