
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.

ILP Based Load Balancing in
Deduplicated Storage Systems

Ariel Kolikant

ILP Based Load Balancing in
Deduplicated Storage Systems

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Ariel Kolikant

Submitted to the Senate
of the Technion — Israel Institute of Technology

Elul 5782 Haifa September 2022

This research was carried out under the supervision of Dr. Gala Yadgar, in The Henry and
Marilyn Taub Faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research collab-
orators in conferences and journals during the course of the author’s research period, the most
up-to-date versions of which being:

Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar. The what, the from,
and the to: The migration games in deduplicated systems. To appear in the Special Section on FAST
22 in the Transaction on Storage.
Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar. The what, the from,
and the to: The migration games in deduplicated systems. In 20th USENIX Conference on File and
Storage Technologies (FAST 22), Santa Clara, CA, February 2022. USENIX Association.

The generous financial help of the Technion is gratefully acknowledged. This research was
supported by the Israel Science Foundation (grant No.807/20).

Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Background and Related Work 7
2.1 ILP . 7
2.2 Data deduplication . 7
2.3 Data migration in distributed deduplication systems 9

3 Motivation and problem statement 11
3.1 Motivation . 11
3.2 Problem Statement . 12

4 Greedy Method 15

5 ILP Based Method 19

6 Evaluation 25
6.1 Experimental Setup . 25
6.2 Implementation . 26

6.2.1 Greedy . 26
6.2.2 ILP . 27

6.3 Basic comparison between algorithms . 27
6.3.1 Deletion . 27
6.3.2 Load Balance . 28
6.3.3 Runtime . 29
6.3.4 Implications . 29

6.4 Sensitivity to problem parameters . 30
6.4.1 Sampling degree . 30
6.4.2 Time limit . 31
6.4.3 Load balancing and traffic constraints . 32
6.4.4 Number of volumes . 32

6.5 Additional sampling . 33

7 Conclusions and open questions 37

Hebrew Abstract i

List of Figures

2.1 Initial system (a) and alternative migration plans: with optimal balance (b),
optimal traffic (c), and optimal deletion (d). All the blocks in the system are of
size 1. 8

4.1 Overview of our extended greedy algorithm. 16

5.1 Sampling by sample size k and extra sample size k′ 22

6.1 Reduction in system size of all systems and all algorithms (with and without load bal-
ancing constraints. k = 13 and µ = 2%). 28

6.2 Resulting balance of all systems and all algorithms (with and without load balancing
constraints. k = 13 and µ = 2%). 28

6.3 Algorithm runtime for all systems and all algorithms (with and without load balancing
constraints. k = 13 and µ = 2%). 29

6.4 Linux-skip system with 5 volumes, µ = 2%, and two sampling degrees: k = 8, 13. 30
6.5 Deletion in UBC-500 system, µ = 2%, increasing timeout values 31
6.6 UBC-500 system with k = 13 and different load balancing margins. 32
6.7 Linux-skip with different numbers of target volumes with Tmax = 100, k = 13, µ = 2%. . 33
6.8 Deletion, balance, and runtime of UBC-500 with different additional sampling sizes with

different values of Tmax, K, andk′. 34
6.9 Deletion, balance, and runtime of Linux-skip with different additional sampling sizes with

different values of Tmax, K, andk′. The red ’x’ marks represent experiments where the
ILP solver determined that no solution meets the problem’s constraints (infeasible). . . . 34

Abstract

Deduplication reduces the size of the data stored in large-scale storage systems by replacing
duplicate data blocks with references to their unique copies. This creates dependencies between
files that contain similar content and complicates the management of data in the system. In
the work presented in this thesis, we have addressed the problem of data migration and load
balancing, where files are remapped between different volumes because of system expansion or
maintenance.

The challenge of determining which files and blocks to migrate has been studied extensively
for systems without deduplication. In the context of deduplicated storage, however, only sim-
plified migration scenarios were considered and those were not extended into the broader load
balancing problem.

In our work we have formulated the general migration problem of deduplicated systems as
an optimization problem whose objective is to minimize the system’s size while ensuring that
the storage load is evenly distributed between the system’s volumes, and that the network traffic
required for the migration does not exceed its allocation. We extended the migration problem
to address the load balancing problem limitations.

We then created an algorithm based on the ILP formulation, to solve the migration problem.
We then compared it’s results to two other algorithms solving the same generated migration and
load balancing problem: the greedy algorithm and the clustering algorithm. Our ILP algorithm
manages to consistently obtain the best solutions to the problem though it requires significantly
larger execution times.

1

2

Abbreviations and Notations

V : Storage volume
Bv : Set of unique blocks stored on V
Fv : Set of files mapped to V
µ : Load balancing tolerance margin
k : Sampling degree used in fingerprint sampling acceleration method

3

4

Chapter 1

Introduction

Many large-scale storage systems employ data deduplication to reduce the size of the data that
they store. The deduplication process identifies duplicate data blocks in different files and
replaces them with pointers to a unique copy of the block stored in the system. This reduction
in the system’s size comes at the cost of increased system complexity. While the complexity
of reading, writing, and deleting data in deduplicated storage systems has been addressed by
many academic studies and commercial systems, the high-level management aspects of large-
scale systems, such as capacity planning, caching, and quality and cost of service, still need to
be adapted to deduplicated storage [SCJ16].

This work focuses on the aspect of data migration, where files are remapped between separate
deduplication domains, or volumes. A volume may represent a single server within a large-
scale system, or an independent set of servers dedicated to a customer or dataset. Files might
be remapped as a result of volumes reaching their capacity limitation or of other bottlenecks
forming in the system.

Deduplication introduces new considerations when choosing which files to migrate, due to
the data dependencies between files: when a file is migrated, some of its blocks may be deleted
from its original volume, while others might still belong to files that remain on that volume.
Similarly, some blocks need to be transferred to the target volume, while others may already be
stored there. An efficient migration plan must optimize several, possibly conflicting objectives:
the physical size of the stored data after migration, the load balancing between the system’s
volumes, and the network bandwidth generated by the migration itself.

Several recent studies address specific (simplified) cases of data migration in deduplicated
systems. Harnik et al. [HHS+19] address capacity estimation and propose a greedy algorithm
for reducing the system’s size. Rangoli [NK13] is a greedy algorithm for space reclamation,
where a set of files is deleted to reclaim some of the system’s capacity. GoSeed [NSKY21] is
an ILP (integer linear programming)-based algorithm for the seeding problem, in which files are
remapped into an initially empty target volume. While even the seeding problem is shown to be
NP-hard [NSKY21], none of these studies address the conflicting objectives involved in the full
data migration problem. Namely, the tradeoff between minimizing the system size, minimizing
the network traffic consumed during migration, and maximizing the load balance between the
volumes in the system.

In this work, we address, for the first time, the general case of data migration. We begin by

5

formulating the data migration problem in its most general form, as an optimization problem
whose main goal is to minimize the overall size of the system. We add the traffic and load
balancing considerations as constraints on the migration plan. The degree in which these con-
straints are enforced directly affects the solution space, allowing the system administrator to
prioritize different costs. Thus, the problem of data migration in deduplication systems maps
to finding what to migrate, where to migrate from, and where to migrate to within the traffic
and load balancing constraints specified by the administrator.

We then introduce two novel algorithms for generating an efficient migration plan. The first
is a greedy algorithm that is inspired by the greedy iterative process in [HHS+19]. Our extended
algorithm distributes the data evenly between volumes while ensuring that the migration traffic
does not exceed the maximum allocation. By breaking this process into several phases, we
ensure that the allocated traffic is used for both load balancing and capacity reduction, balancing
between the two (possibly conflicting) goals.

Our second algorithm is inspired by the ILP-based approach of GoSeed. We reformulate the
ILP problem with variables and constraints that express the traffic used during migration and
the choice of volumes from which to remap files or to remap files onto. Our formulation for the
general migration problem is naturally much more complex than the one required for seeding.
Nevertheless, we successfully applied it to data migration in systems with hundreds of millions
of blocks.

This work has been done concurrently with research done at [KKD+22] on the clustering
algorithm. The Greedy and ILP algorithms presented in this work were mainly evaluated against
the clustering algorithm.

We implemented our two algorithms and evaluated them on six system snapshots created
from three public datasets [FSL, MB11, Lin]. Our results demonstrate that all algorithms
can successfully reduce the system’s size while complying with the traffic and load balancing
constraints. Each algorithm has different advantages: the greedy algorithm produces a migration
plan in the shortest runtime (often several seconds), although its reduction in system size is
typically lower than that of the other algorithms. The ILP-based approach can efficiently utilize
the allowed traffic consumption, and improve as the load balancing constraints are relaxed.
However, its execution must be timed out on the large problem instances, which often prevents
it from yielding an optimal migration plan. The clustering algorithm achieves comparable results
to those of the ILP-based approach, and sometimes even exceeds them. It does so in much shorter
runtimes.

6

Chapter 2

Background and Related Work

2.1 ILP

Integer linear programming (ILP) is an optimization problem. The input of an ILP problem is
a vector x, a set Ax and an objective function Tx. Vector x represents the model’s variables so
that x1, x2, ..., xn−1, c ∈ Z. Linear constraints Ax represents the domain of legal solutions, each
constraint being of the form a0x0 + a1x1 + ... + an−1xn−1 ≤ c such that a1, a2, ..., an−1, c ∈ Z
are known parameters. The objective function Tx represents what the model seeks to optimize,
and is of the form t0x0 + t1x1 + ... + tn−1xn−1.

The solution of an ILP problem is an integer assignment of vector x that satisfies constraints
Ax and maximizes Tx. However, even a relaxed problem where the goal is finding whether a
solution exists where x is restricted to Booleans, is long known to be NP-complete [Kar72]. The
reason ILP problems have become popular despite having no theoretical efficient solver, is due
to the existence of efficient ILP solvers [Gur, CPL] that can solve practical instances. Thus the
formulating of problems into ILP models has been used to find practical solutions to various
problems in a a wide range of fields [RH02, Aba89, ZWM13, ZSW16].

2.2 Data deduplication

In a nutshell, the deduplication process splits incoming data into fixed or variable sized chunks,
which we refer to as blocks. The content of each block is hashed to create a fingerprint, which is
used to identify duplicate blocks and to retrieve their unique copy from storage. Several aspects
of this process must be optimized so as not to interfere with storage system performance. These
include chunking and fingerprinting [Man94, XJF+14, XZJ+16, MCM01, AAA+10], indexing
and lookups [ZLP08, SBGV12, ADK+18], efficient storage of blocks [LEB+09, LSD+14, DSL10,
SBGV12, CLZ11, YJTL16, LLD+14], and fast file reconstruction [FFH+14, zCWWD18, LEB13,
KBKD12]. Although the first commercial systems used deduplication for backup and archival
data, deduplication is now commonly used in high-end primary storage.

7

(a) Initial system: balance = 1/5

(b) Alternative 1: deletion=0, traffic=2, balance=1

(c) Alternative 2: deletion=1/9, traffic=0, balance=0

(d) Alternative 3: deletion=3/9, traffic=1, balance=0

Figure 2.1: Initial system (a) and alternative migration plans: with optimal balance (b), optimal
traffic (c), and optimal deletion (d). All the blocks in the system are of size 1.

8

2.3 Data migration in distributed deduplication systems

Numerous distributed deduplication designs were introduced in commercial and academic stud-
ies [CAVL09, DGH+09, GE11]. We focus on designs that employ a separate fingerprint index in
each physical server [DDL+11, BELL09, HHS+19, BLC14, DDS+17]. This design choice main-
tains a small index size and a low lookup cost, facilitates garbage collection at the server level,
and simplifies the client-side logic. In this design, each server (volume) is a separate deduplica-
tion domain, i.e., duplicate blocks are identified only within the same volume. Recipes of files
mapped to a specific volume thus point to blocks that are physically stored in that volume.

The coupling of the logical file’s location and the physical location of its blocks implies that
when a file is remapped from its volume, we must ensure that all its blocks are stored in the
new volume. At the same time, the file’s blocks cannot necessarily be removed from its original
volume, because they might also belong to other files. For example, consider the initial system
depicted in Figure 2.1(a), and assume we remap file F2 from volume V2 to volume V1, resulting
in the alternative system in Figure 2.1(b). Block B1 is deleted from V2 because it is already
stored in V1. Block B2 is deleted from V2, but must be copied to V1, because it wasn’t there
in the initial system. Block B3 must also be copied to V1, but is not deleted from V2 because
it also belongs to F3. The total sizes of the initial system and of this alternative are the same:
nine blocks.

Various approaches to data migration in distributed deduplication systems have been pre-
sented in previous works. The work presented in Harnik et al [HHS+19] presented a greedy
iterative algorithm for reducing the total capacity of data in a system with multiple volumes.
In their research, they defined the space-saving ratio: for volumes v, v′ such that file f holds
f ∈ v, f /∈ v′; R is defined as the size of replicated blocks if f were to be migrated to v′ and D

is defined as the size of deleted blocks if f were to be migrated to v′. The space-saving ratio is
defined as R

D .
Based on the definition of space-saving ratio, they developed a greedy algorithm: in each

iteration, each file f has its space-saving ratio calculated for each volume v. The pair (f, v)
represents the migration of file f to volume v and in each iteration the pair (f, v) with the
smallest ratio is chosen to be migrated to volume v since it will result in the best space saving
in that iteration. The algorithm stops when there are no legal migrations or if a predetermined
deletion goal has been reached.

The work done in [NSKY21] addresses a simplified case of data migration called seeding,
where the initial system consists of many files mapped to a single volume. The migration
goal is to delete a portion of this volume’s blocks by remapping files to an empty target vol-
ume [DJS+19]. GoSeed formulates the seeding problem as an ILP (integer linear programming)
instance whose solution determines which files are remapped, which blocks are moved from
the source volume to the target, and which are replicated to create copies on both volumes.
This approach is made possible by the existence of open-source [SYM, lps, GNU] and commer-
cial [CPL, Gur] ILP-solvers. GoSeed is applied to instances with millions of blocks with several
acceleration heuristics, some of which we adapt to the generalized problem.

The Rangoli algorithm presented in [NK13] is a greedy algorithm for space reclamation—
another specific case of data migration where a set of files is chosen for deletion in order to

9

delete a portion of the system’s physical size. Unlike the greedy and ILP-based approaches that
inspire our own algorithms, the problem solved by Rangoli is too simplified for it to be extended
for general migration.

The clustering algorithm is described in [KKD+22] and was developed concurrently with
our work. In our evaluation, it was the primary algorithm we compared our algorithms to. The
Clustering algorithm is based on clustering [clu] which is a well known method for grouping
objects based on similarity. The clustering algorithm uses Hierarchical clustering [GP13] an
iterative clustering process that receives a set of initial clusters as input and in each iteration
merges the most similar clusters into a new cluster. The initial clusters are viewed as clusters
of size 1 and the merging of clusters creates a tree where the size 1 clusters constitute its leaves.
In our context, the objects are files and their similarity is measured by the number of blocks
shared between files. Files with similar blocks are joined into clusters. The resulting clusters
represent a possible grouping of files which would have high block similarity. Those clusters are
then mapped into volumes and the transition between the initial system volumes to the system
volumes presented by the clusters is the migration plan produced by the algorithm.

Similarity between clusters is an essential definition for the hierarchical clustering process.
In their work they used Jaccard distance as the metric for the cluster similarity. For sets A

and B, J(A, B) is defined as |A∩B|
|A∪B| . The Jaccard distance between files A and B is defined as

distJ = J(A, B) = 1 − J(A, B). Despite being a heuristic based algorithm that does not reach
the mathematically optimal solution, the clustering algorithm achieves results that are close to
the optimal solutions.

Both GoSeed and Rangoli address a very specific case of data migration in deduplicated
systems. Harnik et al. address the general data migration problem but does not cover all data
migration considerations taken in traditional (non-deduplicated) storage systems. The clustering
algorithm, having been developed in conjunction with ILP and Greedy, makes similar assump-
tions to our work regarding the storage system. The clustering algorithm also takes similar
consideration to our work, This makes it an ideal candidate for comparison in our evaluation.

10

Chapter 3

Motivation and problem statement

3.1 Motivation

Data migration in traditional (non-deduplicated) storage systems takes into account various
often conflicting objectives when creating a migration plan. However in the various works done
about data migration in deduplicated systems, only the objective of storage size reduction has
been addressed. In this work we attempt to solve the migration problem for deduplicated systems
with two additional objectives that are of equal importance to size reduction. The two objectives
we added are: minimizing migration traffic and load balancing.

Minimizing migration traffic. In most storage systems, the amount of network bandwidth
available for maintenance activities is limited [RSG+13, HSX+12]. On non-deduplicated storage
systems, traditional migration plans take the bandwidth limitation into account and minimize
its usage as part of their optimization [LAW02, MHS18, TAB11, DJS+19, AHK+02, AHH+01].
However, previous studies of data migration in deduplicated systems have not explicitly taken
traffic minimization into account. Harnik et al. [HHS+19] do not take it into account at all. The
work solving the more relaxed seeding problem implicitly minimizes the bandwidth usage by
minimizing the storage size in GoSeed [NSKY21]. Our work focuses on bandwidth as it relates
to data transfer between nodes. The physical layout of nodes and their precise scheduling are
out of the scope of this work. Data migration costs can be divided into two types based on
the bandwidth aspect. The migration traffic is the amount of data that would be transferred
between volumes during the migration. Replication cost is the total number of blocks that would
be duplicated as a result of the migration. Since replicated blocks are necessarily transferred
between volumes, the migration traffic depends on data replication, yet they are not always
equal to each other.

For example, Alternative 1 in Figure 2.1(b) results in transferring two blocks between vol-
umes, B2 and B3, even though B2 is eventually deleted from its source volume. In contrast, the
alternative migration plan in Figure 2.1(c) does not consume traffic at all: file F1 is remapped
to V2 which already stores its only block, so B1 can be deleted from V1. This alternative also
reduces the system’s size to eight blocks, making it superior to the first alternative in terms of
both objectives. In some storage systems the objective of minimizing the traffic may conflict
with the objective of minimizing the system’s overall size.

Load Balancing. Load balancing is one of the most important objectives of any distributed

11

storage system, however it often conflicts with other system objectives such as utilization and
management overhead [AHK+02, WBMM06, NEF+12]. Load balancing can refer to: IOPS,
bandwidth requirements, or the number of files that belong to each volume. Here we refer to
the capacity load between volumes, as in previous works [BELL09, DDL+11]. In deduplication
systems where new files are routed to volumes containing existing files, capacity load balancing
is particularly important. Volumes with large capacities are more likely to contain similarities to
migrated files, thus creating a snowball effect as files would be migrated to the largest volumes
resulting in more similarities for f uture migrations.

The load balancing objective conflicts with our first objective of size reduction. The best
case for size reduction would occur if all files were migrated to a single volume, which would
result in the worst load balancing possible. It means that distributed deduplicated storage
systems have to weigh the benefits of remapping a file to a volume where it would save space
and remapping it to a volume where it would better distribute the load. Performance load
balancing is the distribution of storage in the volumes in a way that ensures similar performance
across all volumes. Performance load balancing is not addressed directly in this work, yet it is
implicitly improved by load balancing. Both the methods presented in this work can be extended
to address performance load balancing explicitly.

In this research, we measure load balancing using the balance metric, which is similar to the
fairness metric [GWM07]—the ratio between the size of the smallest volume and the largest
volume in the storage system. For example, the balance of the initial system in Figure 2.1(a)
is |V1|/|V2| = 1/5. Alternative 1 (Figure 2.1(b)) is perfectly balanced, with balance = 1, while
Alternative 2 (Figure 2.1(c)) has the worst balance: |V1|/|V2| = 0.

3.2 Problem Statement

For a storage system S with a set of volumes V , let B = {b0, b1, . . .} be the set of unique blocks
stored in the system, and let size(b) be the size of block b. Let F = [f0, f1, . . .] be the set of
files in S, and let IS ⊆ B × F × V be an inclusion relation, where (b, f, v) ∈ IS means that
file f mapped to volume v contains block b that is stored in this volume. The expression b ∈ v

indicates that (b, f, v) ∈ IS for some file f , while the expression f ∈ v indicates that (b, f, v) ∈ IS

for some block b. The size of a volume is equal to the total size of the unique blocks stored
in it, i.e., size(v) = Σb∈vsize(b). The size of the system is the total size of its volumes, i.e.,
size(S) = size(V) = Σv∈V size(v).

A migration plan FM is a set of files and target volumes FM ⊆ F × V . (f, v) ∈ FM indicates
that the migration plan would have file f moved to volume v. Since we know the initial state of
files and blocks in the volumes, we can deduce the final state of the blocks by the file movements.
New system S′ is defined as the result of applying migration plan FM on system S and it has
the resulting I ′

S and V ′

The general migration problem is to find FM which results in the minimum size of S′. This is
equivalent to finding FM which maximizes the difference between blocks that can be deleted and
blocks that must be replicated. Migration plan FM must uphold the traffic constraint and the
load balancing constraint. We denote Tmax as the maximum traffic allowed during the execution
of a migration plan.

12

The traffic constraint sets a limit of Tmax on the amount of bandwidth that can be used.
Migrating a block would use bandwidth in the case where it is migrated to a volume that did
not contain it in the initial system. Since the storage system is a deduplicated storage system,
at most one instance of a block is needed in any volume and the migration of the same blocks to
a volume would only use the bandwidth once.If a block is not moved into a volume, or if a block
existed in a volume before being moved, it is not required to physically copy the block and thus
no bandwidth would be used in order to get a copy of the block into the the target volume and
it is not counted into the traffic constraint.

The load balancing constraint ensures that the migration plan would result in a storage
system maintaining the desired load balance. Demanding a strict equality between the final
balance and desired balance limits the amount of possible migration plans, often resulting in no
migration plans at all. Thus, we present a tolerance margin µ in the load balancing constraint.
The load balancing constraint with a tolerance margin requires that every volume v in the
new system S′ would have a size within µ of the average new system volume size. ∀v′ ∈ V ′ :
| size(V ′)

|V ′| − size(v′)| ≤ size(V ′) ∗ µ

For example, for the initial system in Figure 2.1(a), Alternative 1 (Figure 2.1(b)) is the only
migration plan that satisfies the load balancing constraint (for any µ). For Tmax lower than 2/9,
no migration is feasible. On the other hand, if we remove the load balancing constraint, the
optimal migration plan will depend on the traffic constraint alone: Alternative 2 (Figure 2.1(c))
is optimal for, e.g., Tmax = 0, and Alternative 3 (Figure 2.1(d)) is optimal for Tmax = 3.

13

14

Chapter 4

Greedy Method

The basic greedy algorithm by Harnik et al. [HHS+19] iterates over all the files in each volume,
and calculates the space-saving ratio from remapping a single file to each of the other volumes:
the ratio between the total size of the blocks that would be replicated and the blocks that would
be deleted from the file’s original volume. In each iteration, the file with the lowest ratio is
remapped. For example, if this basic greedy algorithm was applied to the initial system in
Figure 2.1(a), it would first remap file F1 to volume V2, with a space-saving ratio of 0, resulting
in Alternative 2 (Figure 2.1(c)). The process halts when the total capacity is reduced by a
predetermined deletion goal. This algorithm is not directly applicable to the general migration
problem because it does not consider traffic and load balancing.

Addressing the traffic constraint is relatively straightforward. In our extended greedy al-
gorithm we make it the halting condition: the iterations stop when there is no file that can
be remapped without exceeding the maximum allocated traffic. A small challenge is that a
file might be remapped in several iterations of the algorithm, while, in the resulting migration
plan, it will only be remapped from its original volume to its final destination. As a result, the
sum of traffic of all the individual iterations can be (and is, in practice) higher than the traffic
required when executing migration plan. This will not violate the traffic constraint, but will
cause the algorithm to halt before taking advantage of the maximum allowed traffic. Thus, we
heuristically allow the algorithm to use 20% more traffic than the original traffic constraint, to
prevent it from halting prematurely. We include this simple extension, without a load-balancing
constraint, in our evaluation.

Complying with the load-balancing constraint is more challenging. For example, if the
basic greedy algorithm reached Alternative 2 (Figure 2.1(c)), it could no longer remap any
single file to volume V1 without increasing the system’s capacity, and thus the system will
remain unbalanced with at least one empty volume. A naive extension to this algorithm could
enforce the load-balancing constraint by preventing files from being remapped if this increases the
system’s imbalance. However, such a strict requirement might preclude too many opportunities
for optimization. For example, for the initial system in Figure 2.1(a), it would only allow to
remap file F2 to volume V1, resulting in Alternative 1 (Figure 2.1(b)). The system would be
perfectly balanced, but the basic algorithm would then terminate without reducing its size at
all.

We address this challenge with two main techniques. The first is defining two iteration types:

15

Figure 4.1: Overview of our extended greedy algorithm.

one whose goal is to balance the system’s load, and another whose goal is to reduce its size. We
perform these iterations interchangeably, to avoid the entire allocated traffic from being spent
on only one goal. The second technique is to relax the load-balancing margin for the early
iterations and continuously tighten it until the end of the execution. The idea is to let the early
iterations remap files more freely, and to ensure that the iterations at the end of the algorithm
result in a balanced system.

Figure 4.1 illustrates the process of our extended greedy algorithm. We divide the algorithm’s
process into phases. 1⃝ Each phase is allocated an even portion of the traffic allocated for
migration, and is limited by a local load-balancing constraint. Each phase is composed of two
steps. 2⃝ The load-balancing step iteratively remaps files from large volumes to small ones, until
the volume sizes are within the margin defined for this phase, or its traffic is exhausted. 3⃝ The
capacity-reduction step uses the remaining traffic to reduce the system’s size by remapping files
between volumes, ensuring that volume sizes remain within the margin.

Each phase is limited by local traffic and load-balancing constraints, calculated at the
beginning of the phase. The phase traffic determines the maximum traffic that can be used
in each phase, and is roughly even for all the phases. The local phase margin determines the
minimum and maximum allowed volume sizes in each phase. It is larger than the global margin,
µ, in the first phase, and gradually decreases before each phase, until reaching µ in the last
phase. By default, our greedy algorithm consists of p = 5 phases. The phase traffic for phase i,
0 ≤ i < p, is 1/(p−i) of the unused traffic, and the phase margin for the first phase is µ × 1.5. We
have observed that increasing the number of phases correlates with better size reduction, but
once the number of phases exceeds 5, there is usually too little traffic to ensure load balancing.
Based on this observation, we have set the default number of phases to 5 and all our evaluations
were done with this default value.

The load balancing step is the first step in each phase. In each of its iterations, the
volumes are sorted according to their sizes, and we attempt to remap files from the largest
volumes to the small ones. A file can be remapped only if some blocks will be deleted from its
source volume as a result. Namely, we look for a file to remap between a ⟨source, target⟩ pair
of volumes, where source is the largest volume and the target is the smallest volume for which
such a file exists. In each iteration, the amount of traffic required to remap the chosen file is
calculated, and the iterations halt when the maximum allowed traffic or allowed volume sizes
are reached.

The capacity-reduction step uses the remaining traffic allocation of the phase. It is
similar to the original greedy algorithm, but it ensures that each file remap does not cause the
volumes to become unbalanced. In other words, we can remap a file only if this does not cause
its source volume to become too small, or its target volume to become too large. Note that
the amount of traffic that remains for the capacity-reduction step depends on the degree of

16

imbalance in the initial system. In the most extreme case of a highly unbalanced system, it is
possible for the load balancing step to consume all the traffic allocated for the phase. In this
case, the capacity-reduction step halts in the first iteration. For cases other than this extreme,
a higher number of phases can divert more traffic for capacity-reduction, at the cost of longer
computation time due to the increased number of iterations.

17

18

Chapter 5

ILP Based Method

Our ILP-based approach is inspired by GoSeed [NSKY21], designed for the seeding problem,
where files can only be remapped from the source volume to the empty target volume. GoSeed
thus defined three types of variables whose assignment specified (1) whether a file is remapped,
(2) whether a block is replicated on both volumes, and (3) whether a block is deleted from
the source and moved to the target. These limited options resulted in a fairly simple set of
constraints, which cannot be directly applied to the general migration problem. The major
difference is that the decision of whether or not we can delete a block from its source volume
depends not only on the files initially mapped to this volume, but also on the files that will
be remapped to it as a result of the migration. Thus, in our ILP-based approach, every block
transfer is modeled as creating a copy of this block, and a separate decision is made whether or
not to delete the block from its source volume.

The problem’s constraints are defined on the set of volumes, files, and blocks, from the
problem statement in Chapter 3, the maximum traffic Tmax, and load-balancing margin µ. We
define the target size of each volume v as wv, given as percentage of the system size after
migration. By default, wv =1/|V |. The constraints are expressed in terms of three types of
variables that denote the actions performed in the migration: xfst denotes whether file f is
remapped from its source volume s to another (target) volume t. cbst denotes whether block b

is copied from its source volume s to another (target) volume t. Finally, dbv denotes whether
block b is deleted from volume v. The solution to the ILP instance is an assignment of 0 or 1
to these variables. The resulting migration plan remaps the set of files for which xfst = 1 (for
some volume t), transfers the blocks for which cbst = 1 to their respective target volume, and
deletes the blocks for which dbv = 1 from their respective volumes.

Constraints and objective. We model the migration problem as an ILP problem as
follows. For every two volume vs, vt ∈ V , for every file fl ∈ F we allocate a Boolean variable
xlst. Assigning 1 to xi means that fl is remapped from vs to vt. For every block bi ∈ B, for
every volume vs ∈ V we allocate a Boolean variable dis. Assigning 1 to dis means that bi was
deleted from vs. For every block bi ∈ B, for every two volumes vs, vt ∈ V we allocate a Boolean
variable cist. Assigning 1 to cist means that bi was copied from vs to vt. We annotate the initial
intersect of volumes a group of sets bi ∈ intersectst means that in the bi ∈ vs, bi ∈ vt.

We annotate size(bi) as the physical size of block bi and size(vs) as Σbi∈vssize(bi). We
annotate Traffic as the maximum allowed traffic for the migration plan.

19

We model the problem constraints as a set of linear inequalities, as follows.

1. All the variables are Boolean: 0 ≤ xlst ≤ 1, 0 ≤ dis ≤ 1, 0 ≤ cist ≤ 1 for every fl ∈ F ,
bi ∈ B and vs, vt ∈ V .

2. A file can be remapped to at most one volume: Σvt∈V Xlst ≤ 1 for every fl ∈ F and
vs, vt ∈ V .

3. A block can only be deleted or copied from a volume it was originally stored in: If bi /∈ vs;
cist = dis = 0 for every bi ∈ B and vs, vt ∈ V .

4. A block can be deleted from a volume only if all the files containing it are remapped to
other volumes: If bi ∈ fl and fl ∈ vs; dis ≤ xlst for every bi ∈ B, fl ∈ F and vs, vt ∈ V .

5. A block can be deleted from a volume only if no file containing it is remapped to this
volume: if bi ∈ fl, fl ∈ vs and fl /∈ vt; dit ≤ 1−xlst for every bi ∈ B, fl ∈ F and vs, vt ∈ V .

6. Regard all intersect as having been copied: If bi ∈ intersectst; cist = 1 for every bi ∈ B

and vs, vt ∈ V .
7. When a file is remapped, all its blocks are either copied to the target volume, or are

initially there: If bi ∈ fl; xlst ≤ Σv∈V cist for every bi ∈ B and fl ∈ F .
8. A block can be copied to a target volume only from one source volume: Σs,bi /∈Intersectst

cist ≤
1 for every bi ∈ B and vt ∈ V .

9. A block must be deleted if there are no files containing it on the volume:
1 − {Σfls

(1 − Σvm∈V Xlssm) + Σflv
(xlmms)} for every vs, vm ∈ V and every flm ∈ vm and

fls ∈ vs.
10. A block cannot be copied to a target volume if no file will contain it there:

Σvs∈V cist ≤ Σvs∈V Σfl∈VsXlst for every vt ∈ V , every bi ∈ B and fl ∈ F so that bi ∈ fl

11. A file cannot be migrated to its initial volume: Xlst = 0 for every fl ∈ F and vs, vt ∈ V .
12. Traffic constraint: The size of all the copied blocks is not higher than the maximum allowed

traffic:
Σvs∈V Σt∈V Σbi /∈intersectst

cist ∗ size(bi) ≤ Traffic.

13. Load balancing constraint: For each volume v,
(wv − µ) × Size(S′) ≤ size(v′) ≤ (wv + µ) × Size(S′), where size(v′) is the volume size
after migration, i.e., the sum of its non-deleted blocks and blocks copied to it:
(Wtµ)∗(size(V)+TotalV olumeChange) ≤ newBlocks+oldBlocks ≤ (Wt+µ)∗size(V)+
TotalV olumeChange. for every volume vt ∈ V

(a) TotalV olumeChange: Σbi∈B ∗ Σvs∈V [−dis + Σvt∈V,bi /∈intersectst
cist]

(b) newBlocks: Σvs∈V,bi /∈intersectst
cist ∗ size(bi)

(c) oldBlocks: Σbi∈vt(1 − dit ∗ size(bi))
▶ Objective: maximize the sum of sizes of all blocks that are deleted minus all blocks that are

copied. This is equivalent to minimizing the overall system size: Min(Σibi ∗ Σvs∈V [−dis +
Σvt∈V,bi /∈intersectst

cist])

Constraints 12 and 13 formulate the traffic and load-balancing goals, and constraints 8, 9,
and 10 ensure that the solver does not create redundant copies of blocks to artificially comply
with the load balancing constraint. This is similar to the constraint that prevents orphan blocks
in the seeding problem [NSKY21]. For evaluation purposes, we will also refer to a relaxed

20

formulation of the problem without the load-balancing constraint. In that version, constraints
8, 9, 10, and 13 are removed, considerably reducing the problem complexity.

The ILP formulation given in this paper is designed for the most general case of data mi-
gration, where any file can be remapped to any volume. In reality, the migration goal might
restrict some of the remapping options, potentially simplifying the ILP instance. For example,
we can limit the set of volumes that files can be migrated to by eliminating the xfst and cbst

variables where t is not in this set. We can similarly restrict the set of volumes files can be
migrated from, or require that a set of specific files are (or are not) remapped.

Complexity and run time. The complexity of the ILP instance depends on |B|, |F |,
and |V |—the number of blocks, files, and volumes, respectively. The number of variables is
|V |2|F | + |V |2|B| + |V | × |B|, corresponding to variable types xfst, cbst, and dbv. Each of the
constraints defined on these variables contributes a similar order of magnitude. An exception
is constraint 13, which reformulates the system size, twice, to ensure each individual volume’s
size is within the required margin. Indeed, the relaxed formulation without this constraint is
significantly simpler than the full formulation.

We use two of the acceleration methods suggested by GoSeed to address the high complexity
of the ILP problem. The first is fingerprint sampling, where the problem is solved for a subset
of the original system’s blocks. This subset (sample) is generated by preprocessing the block
fingerprints and including only those that match a predefined pattern. Specifically, as suggested
in [HHS+19], a sample generated with sampling degree k includes only blocks whose fingerprints
consist of k leading zeroes, reducing the number of blocks in the problem formulation by 1/2k on
average.

The second acceleration method is solver timeout, which halts the ILP solver’s execution
after a predetermined runtime. As a result, the server returns a feasible solution that is not
necessarily optimal. We do not repeat the detailed analysis of the effectiveness of these heuristics,
which were shown to be effective in earlier studies. Namely, the analysis of GoSeed showed that
most of the solver’s progress happens in the beginning of its execution (hence, timing out does
not degrade its quality too much), and that it is more effective to reduce the sample size than
to run the solver longer on a larger sample, as long as the sampling degree is not higher than
k = 13.

We have attempted a third acceleration method which we called additional sampling. The
third acceleration method is based on two observations. Firstly we observe that the more
solutions the ILP algorithm can check before a timeout, the closer the output solution would be
to the optimal solution. Secondly we observe that larger ILP models require more time from the
ILP solver to check each solution. Therefor large constraints that increase the size of the model
result in solutions with lower size reduction and reducing the size of the constraints would allow
for better solutions. While most constraints share the same complexity, constraint 11 (the load
balancing constraint) is more complex than the other constraints by an order of magnitude since
it reformulates the system size twice. By reducing the size of constraint 11 the ILP solver could
check more solutions before reaching a timeout and result in a solution closer to the optimal
solution.

Given the set of the original blocks of the system Boriginal we create the sampled set of

21

(a) Original group of blocks

(b) sampling k = 1 (c) sampling and extra sampling k = 1, k′ = 1

(d) sampling and extra sampling k = 1, k′ = 2 (e) sampling and extra sampling k = 2, k′ = 1

Figure 5.1: Sampling by sample size k and extra sample size k′

22

blocks according to the first acceleration method Bsampled ⊆ Boriginal, we then create a third set
Bsampled′ ⊆ Bsampled ⊆ Boriginal that we use only for constraint 11. This additional sampling
samples Bsampled to create Bsampled′ in the same way the first acceleration method samples
Boriginal to create Bsampled. We perform the sketching of the fingerprints based on the trailing
bits rather than the leading bits, to maintain the randomness of the sampling in a similar way
to the first acceleration method. Figure 5.1 shows an example of 4 block fingerprints. Given
Boriginal = {B0, B1, B2, B3} and a sampling size of k = 1: Bsampled = {B1, B2, B3} since those
are the only blocks in Boriginal whose fingerprints have one leading zero. The additional sampling
of k′ = 1 would result in B′

sampled = {B2, B3} since among the blocks in Bsampled only B2 and
B3 have one trailing zero. Using k = 1, k′ = 2 will result in Bsampled′ = {B3} while k = 2, k′ = 1
will result in Bsampled′ = {B2}.

This method did not achieve the desired result of improving the migration plans’ quality or
reducing the runtimes. In our implementation, by default, this acceleration method is not used.
We further explain our results in section 6.5.

23

24

Chapter 6

Evaluation

There are essentially two questions we want to answer: How do the algorithms compare on the
final system size, load balancing, and runtime? And how are the various system and problem
parameters affecting the performance of different algorithms? Here we describe our evaluation
setup and the experiments we conducted in order to answer those questions.

6.1 Experimental Setup

We performed our experiments on a server that has the following specifications: Ubuntu 18.04.3,
128GB DDR4 RAM (with 2666 MHz bus speed), an Intel Xeon Silver 4114 processor running at
2.20GHz, one Dell 240GB TLC SATA SSD, and one Micron 5200 Series 960GB 3D TLC NAND
Flash SSD.

The file system snapshots we used for creating the systems in our evaluation were derived
from four different datasets. Two of these were used in GoSeed [NSKY21]: the UBC dataset
[MB11, SNI] and the FSL dataset [FSL].UBC’s dataset contains the file systems of 857 Microsoft
employees, and we used the first 500 file systems of this dataset (UBC-500). The FSL dataset
consists of snapshots of Stony Brook University’s FSL Lab’s student home directories. The data
we used (Homes) comes from nine weekly snapshots from nine students between August 28 and
October 23, 2014. They were created using variable sized chunks with Rabin fingerprints, with
an average chunk size of 64KB.

For the purpose of this evaluation, we took the remaining sets of snapshots from [ESSY22]
where two snapshots were created based on the Linux version archive [Lin]. Linux-all includes
all versions from 2.0 to 5.9.14, with each snapshot presented as a file in our model. Linux-skip
contains only every fifth version, meaning that it contains 5× less logical data, but has similar
physical data size. We have created these two snapshots with an average chunk size of 8KB.

The six systems we compared are built to emulate a deduplication system where duplicates
are detected only within a single volume, the systems are listed in Table 6.1. For the systems
created from UBC or Linux snapshots, an equal number of arbitrary snapshots were assigned to
each volume. For example, in the case of 5 volumes using UBC-500, each volume was assigned
100 snapshots as files. Using FSL (Homes) snapshots, systems were created so that each volume
contains all the snapshots of either a group of users or a group of weeks. In Homes-weeks each
volume presents a set of three weeks and contains all users’ snapshots of those three weeks. For

25

System Files |V | Chunks Dedupe Logical
UBC-500 500 5 382M 0.39 19.5 TB

Homes-week 81 3 19M 0.38 8.9 TB
Homes-user 81 3 19M 0.16 8.9 TB
Linux-skip 662 5 / 10 1.76M 0.12 / 0.19 377 GB
Linux-all 2703 5 1.78M 0.03 1.8 TB

Table 6.1: System snapshots in our evaluation. |V | is the number of volumes, Chunks is the number of
unique chunks, and Dedupe is the deduplication ratio—the ratio between the physical and logical size of
each system. Logical is the logical size.

Homes-users, each volume contains all snapshots of three users over a given week.

6.2 Implementation

We ran the three algorithms using a sample of fingerprints [HHS+19] in order to reduce memory
consumption and runtime. We calculated all the results with a sampling degree of k = 13 unless
otherwise stated. We took the migration plans created on the sampled systems and emulated
them on the original system using our calculator which we implemented in a similar fashion
to the one used in [NSKY21]. First, the calculator calculates the initial volume sizes by their
blocks. Second, the calculator simulates the file movements according to the migration plan.
Third, the calculator calculates the final volume sizes by their blocks. Finally, the calculator
infers for each volume the size that has been removed and the size that has been added. We
made our evaluations with Tmax values of 20%, 40%, and 100% of the correlating system’s initial
size, and µ values of 2%, 5%, 10%, and 15% of the system’s final size. Unless explicitly stated,
we’ve done all the evaluations with a timeout of 6 hours, however this timeout was only ever
reached by the ILP algorithm.

Load balancing is the most limiting constraint and often in conflict with size reduction.
For that reason, in addition to the evaluations we have done on the algorithms as described in
chapters 5, 4, and in section 2.3, each algorithm has a relaxed version in which load balancing
is not taken into account. These are marked in the evaluation with the (R) symbol.

6.2.1 Greedy

In order to calculate space-saving ratios efficiently, we maintain a reference-count matrix of size
V × B. The matrix cell [v, b] contains the number of files in volume v that includes block b.
Using this data structure, calculating the space-saving ratio for migrating a file to a volume
can be done by reading the file’s original snapshot and simulating the migration of blocks in
accordance to the migration of files. Every iteration either terminates the algorithm or chooses
one file for migration. Each time a file is chosen for an iteration, [v, b] is updated according to
the snapshot of that file for all blocks included in the file and for both the source and target
volumes.

The Greedy algorithm works as follows: first, the input file systems are parsed into the
reference count matrix representing the initial state of the system. After creating the initial
state of the system, the algorithm alternates between load balancing phases and optimization
phases. We have implemented greedy in C++ and are providing the source code online in [KK].
The greedy algorithm uses few resources, requiring only a single thread to run and maintaining

26

a simple data structure in memory.

6.2.2 ILP

As previously explained in Chapter 5, our ILP based method parses the input system into an
ILP model and then uses an ILP solver to solve it. The ILP algorithm then takes the solver’s
solution and parses it into a migration plan. In our implementation we used the commercial
Gurobi optimizer [Gur] as the algorithm’s ILP solver. We used Gurobi’s C++ interface for
the creation of the ILP model and the translation of the solution to migration plans. Many of
the model’s constraints require block intersections between volumes. A data structure called
intersects_source_target_blocks is created for the intersections to improve model creation. In
intersects_source_target_blocks cell [v1, v2] contains an array of all the IDs of all the blocks
that volume v1 and v2 share in the initial stage. In our evaluations we show the average results of
three random seeds. These seeds effect the order in which the Gurobi solver checks the possible
solutions to the model, resulting in different solutions in cases of timeout. The ILP program
consists of 1860 lines of code. The code includes the ingestion of the system into a model and
the translation of the solver’s solution to a migration plan. The code is available online [KK].
ILP requires a lot of resources and scales well with a large number of threads. We used 38
threads in our evaluation. The ILP model is extremely memory intensive and each addition
to the amount of blocks or files increases the model size and the memory requirements of the
algorithm to create the model.

6.3 Basic comparison between algorithms

6.3.1 Deletion

A migration plan’s deletion corresponds to the deleted physical size’s percentage of the initial
system’s physical size. Figure 6.1 show the deletions in our experiments. In cases of timeout in
ILP the optimal solution may not have been found. This is indicated in the graph with a red x
next to the ILP column. The graph has been split into two groups: systems starting with a high
load balancing score: Linux and Homes-week systems, and systems with a low load balancing
score: Homes-users and UBC-500 systems. A higher load balancing score in the initial state of
the system results in better deletion.

As expected, Greedy produces the smallest deletions. Greedy even increases the system’s
size by replicating blocks to ensure load balancing for Home-users. There is an interesting case in
UBC-500 with Tmax = 100%, where Greedy achieves better deletion than both ILP and Cluster.
This occurs because UBC-500 contains few dependencies between files, negating the advantages
of Cluster’s heuristics and ILP’s search for an optimal solution over Greedy.

Despite ILP providing the theoretically optimal solution, there are cases where the clustering
algorithm outperforms ILP in terms of deletion. In cases where ILP reached the timeout, like
in Linux-all, this can be explained by ILP returning the best solution before the timeout, which
is not yet the optimal solution, as ILP had terminated (had reached timeout) before finding it.
However in Homes-week and Linux-skip this is because ILP’s optimal solution to the sampled
system translates worse to the original system than Cluster’s heuristically based solution.

27

Figure 6.1: Reduction in system size of all systems and all algorithms (with and without load balancing
constraints. k = 13 and µ = 2%).

Figure 6.2: Resulting balance of all systems and all algorithms (with and without load balancing con-
straints. k = 13 and µ = 2%).

suffering more from over fitting to the sampled system than Cluster. ILP seeks the optimal
solution, whereas Cluster uses the sampled system heuristically. This solution upon translation
to a migration plan in the original system is outperformed by Cluster’s less over fitted solution.

In UBC-500 with Tmax = 20%, ILP shows a clear advantage over the other algorithms.
This case is both the largest in terms of data and contains the least amount of migrations that
maintain the constraints. The limited options are better utilized in the ILP algorithm which
searches for the optimal solution rather than searching heuristically. In the case of UBC-500
with Tmax = 100% the effect of the timeout becomes even more apparent. The high traffic
allocation allows for significantly more solutions to examine, resulting in a migration plan that
is further than the optimal one when timeout is reached.

The relaxed version of the algorithms consistently shows better deletions. This is due to not
having to trade deletion for load balancing, two aspects of migration that are at odds with each
other. The most extreme example of this is seen in Homes-users, where the Greedy algorithm
had to increase the size of the system to maintain the load balance. In the relaxed algorithm
where no load balancing constraint existed, the best migration plan was found to be migrating
nothing, as any migration would increase the size of the system (thus resulting in 0% deletion).

6.3.2 Load Balance

In figure 6.2 we show the balance achieved by each algorithm. With a tolerance margin of µ = 2%
and five volumes, the balance should be at least 18/22 = 0.82 yet this value is not necessarily
reached. In the case of the Greedy algorithm, greedy might exhaust its maximum allowed
traffic, creating an incomplete migration plan that can be unbalanced. In the cases of ILP and
Cluster, the migration plans given as output do meet the required balance, however they do so
for the sampled system. When applied to the original system the load value is not necessarily

28

Figure 6.3: Algorithm runtime for all systems and all algorithms (with and without load balancing
constraints. k = 13 and µ = 2%).

maintained. This is most prominent in the Linux systems where some files (i.e, entire Linux
versions) are represented in the sample by only one or two blocks. Despite limiting the solutions
to be within the load balancing tolerance margin, the solution applied to the original system
not only deteriorates the load balancing score but violates the required load balancing tolerance
margin. Their relaxed versions result in highly unbalanced systems, sometimes resulting in
empty volumes. In the relaxed greedy algorithm, extreme load imbalances are avoided. This is
an unintentional advantage of the greedy algorithm’s inability to plan ahead. Objectively, if no
load balance constraint exists, the migration of data to a single volume would result in the most
size reduction. The greedy algorithm which works with one file at a time does not necessarily
converge to transferring all files it can to a single volume.

6.3.3 Runtime

In Figure 6.3 we show the runtime of each algorithm (note the log scale of the y-axis). Greedy is
able to generate a migration plan in 20 seconds or less, in all our experiments. ILP takes longer
than an hour and often reaches our six hour timeout, because ILP attempts to solve an NP-hard
problem. An exception to this are the Homes systems which contain the least amount of files,
decreasing the size of the ILP model considerably. Cluster usually has shorter runtimes than
ILP, with the exception of Home-users, yet still has relatively long runtimes. However, Cluster’s
runtime can be reduced by decreasing the number of executions in the clustering process (180
in our evaluations).

The relaxed version of Greedy has longer runtimes than its original version. This is due to
two reasons: 1) fewer limitations allow for more iterations before no legal migration remains;
2) without a load balancing constraint all phases become optimization phases, in these phases
Greedy checks all legal migrations, resulting in longer average iteration runtimes. In the case
of ILP and Cluster the relaxed versions terminate faster by one or two orders of magnitude. In
ILP this is due to reducing the model’s complexity. In Cluster the removal of the load balance
constraint allows it to terminate with a single attempt rather than attempting multiple times
to meet the load balance constraint.

6.3.4 Implications

Our basic comparison leads to several notable observations
(1) ILP has a clear advantage over Greedy. This was not the case in previous studies

29

Figure 6.4: Linux-skip system with 5 volumes, µ = 2%, and two sampling degrees: k = 8, 13.

that examined simple cases of migration, i.e., seeding [NSKY21] and space reclamation [NK13].
When we examine the general migration plan, it seems the increased complexity of the problem
increases the gap between the greedy solutions and the optimal solutions.

(2) Despite the premise of optimality in the ILP-based approach, it fails to yield better results
than Cluster. Cluster has comparable results and may even outperform ILP. We conclude that
in most cases Cluster is the more efficient approach. However, in cases where a migration plan
must be created with highly restrictive constraints ILP finds significantly better solutions in
terms of size reduction.

(3) While the load balancing constraint conflicts with the size reduction objective, its effect
on the size reduction is usually small. The effect the load balancing constraint has on size
reduction depends on the file similarity degree and load balance of the initial system.

6.4 Sensitivity to problem parameters

6.4.1 Sampling degree

In figure 6.4 we show the deletion, load balance, and runtime of all algorithms with two samples
of the Linux-skip system. We used the sampling degree of k = 13 and k = 8 to generate
the small and big samples, respectively. The Greedy algorithm benefits the most from having
larger samples, achieving better deletion since larger sampling sizes allow it to detect more size
reduction opportunities. This has the opposite effect on ILP-increasing the sample size reduces
the size reduction; this is because increasing the model size results in less solution being checked
before a timeout is reached.

30

Figure 6.5: Deletion in UBC-500 system, µ = 2%, increasing timeout values

We repeated the ILP execution on the large sample with an increased timeout of twelve
hours - figure 6.5. This resulted in a minor improvement of the output quality in cases where
constraints were limiting Tmax = 20 and in a major improvement in cases where the constraints
were lenient Tmax = 100. This is due to lenient constraint allowing for more solutions which the
ILP solver needs to go over thus increasing the impact of the timeout. Cluster returns similar
results for both sample sizes.

All the algorithms achieve better load balancing when run on the larger sample size (k=8),
because the load-balancing constraint is enforced on more blocks, and thus more accurately
translates to the original system. However increasing the sample size increases the runtime by
several orders of magnitude. Greedy’s runtime scales better than ILP and Cluster when the
sample size is larger.

6.4.2 Time limit

To analyze the effect of the timeout value on ILP, we generated a migration plan for the UBC-
500 system with µ = 2% and different values of Tmax, repeating the experiment with increasing
timeout values, between 3 and 48 hours. The results, presented in e 6.5, show that the effect of
the timeout depends on the space of feasible solutions. In this example, increasing Tmax increases
the number of solutions that meet the traffic constraint, respectively increasing the number of
solutions that the ILP solver must consider when searching for the optimal solution. With
Tmax = 20, approximately eight hours are required to find the optimal solution, and increasing
the timeout beyond this time had no effect. The solutions found within three and six hours
were already very close to the optimal one. With Tmax = 40, increasing the timeout beyond six
hours carried diminishing returns, indicating that the solution is likely very close to the optimal
one. In contrast, with Tmax = 100, the solution keeps improving even after 48 hours, due to the
very large solution space. These results are consistent with the analysis of GoSeed in [NSKY21]
which showed that the majority of the solver’s progress is typically achieved in the first half of
its overall runtime. As we increased the problem’s complexity (by increasing Tmax we increased
the time required for the solver to complete its execution, thus increasing its benefit from longer
timeouts.

31

Figure 6.6: UBC-500 system with k = 13 and different load balancing margins.

6.4.3 Load balancing and traffic constraints

In figure 6.6 we show the deletion, load balance, and traffic consumption of all three algorithms
on the UBC-500 system with different values of Tmax and µ. UBC-500 shows the highest
sensitivity to changes in the constraints due to the low similarities between its files. Increasing
Tmax resulted in improved deletion across all three algorithms and resulted in more traffic
consumption. Allowing more traffic allows for more migration to occur. While a lower load
balancing tolerance µ does achieve better load balancing, it has a diminishing effect on the size
reduction, albeit only by a small amount.

6.4.4 Number of volumes

In figure 6.7 we show the deletion and runtime of all three algorithms on the Linux-skip. The
columns named 4, 5, 6, 10 refer to four different distributions of Linux-skip’s files into columns.
The system presented under the name four is a system with an initial amount of 5 volumes,
which is required to migrate to a final state with 4 volumes. The system presented under the
name five is the default system in our evaluations where there are 5 initial volumes and 5 final
volumes. The system presented under the name six is a case where an additional empty volume
is provided to the system for the migration. The system presented under the name ten is a case
where the initial system consists of 10 volumes instead of our default 5, and 10 final volumes.
Similar deletions are achieved when one volume is added or removed, due to the high similarity
between Linux versions. When the initial number of volumes is 10 more duplicates exist in the
initial stage which allows for more deletion opportunities.

32

Figure 6.7: Linux-skip with different numbers of target volumes with Tmax = 100, k = 13, µ = 2%.

We can see an increase in runtime when there is an increase in the number of volumes. As
before, the Greedy algorithm scales better in terms of runtime when we increase the problem
complexity. In the case of adding or removing a volume Greedy spends more time on the faster
load-balancing step and requires less time. In all cases the runtime for 10 volumes was longer
than for 5 volumes because there are more file migration options to consider. This is most
significant in ILP where increasing the volume size increases the model size and the runtime.
All algorithms managed to generate migration plans for varying volumes.

6.5 Additional sampling

We evaluated the effectiveness of additional sampling on two systems, UBC-500 and Linux-skip,
with four initial sampling degrees (k) and four additional sampling degrees (k). We use µ = 20%
as in the rest of the experiments. Figure 6.8 shows the results for the UBC-500 system. With
Tmax = 20, the solution obtained with k = 13 was close to optimal. Nevertheless, the additional
sampling relaxed the constraints to allow more efficient solutions. Note that increasing the initial
sampling to k = 14, 15 had a similar effect.

With Tmax = 100, where the solution space is initially very large, the effect of additional
sampling was different with different initial sampling degrees. With k = 12 the solution space
became so large that the deletion decreased with k′ as a result of the solver timing out farther
from the optimal solution. With k = 13, the solver found a better solution with an internal
sample of k = 1 but increasing k′ reduced the quality of the solution. With k = 14, 15 the
initial sample was small enough to prevent these negative effects. In general, increasing the
additional sampling degree increased the solver’s runtime and reduced the system’s balance,
when compared to migration plans without additional sampling.

Figure 6.9 shows the results for the Linux-skip system. Recall that this system is much

33

Figure 6.8: Deletion, balance, and runtime of UBC-500 with different additional sampling sizes with
different values of Tmax, K, andk′.

Figure 6.9: Deletion, balance, and runtime of Linux-skip with different additional sampling sizes with
different values of Tmax, K, andk′. The red ’x’ marks represent experiments where the ILP solver deter-
mined that no solution meets the problem’s constraints (infeasible).

34

smaller, with some files represented by as few as one or two blocks in the initial sample with
k = 13 We thus used smaller initial sampling degrees for this system. Nevertheless, additional
sampling resulted in an unfeasible ILP problem (i.e., there is no solution that satisfies its con-
straints) when the combined sampling degrees were too high: k = 11, 12 with k′ = 3 and k = 13
with k′ = 2, 3. This is the result of some files having a size of zero in the load-balancing con-
straint. As in the UBC-500 system, increasing the additional sampling degree increased the
solver’s runtime and reduced the system’s balance, except some anomalies due to the aggressive
sampling.

We conclude that additional sampling is not an effective acceleration heuristic: it increases
the space of feasible solutions without reducing the number of variables in the ILP instance. As
a result, it increases the time required to find an optimal solution instead of reducing it. For
a large system, it is more effective to increase the initial sampling degree. Doing so reduces
the size of the problem (rather than its complexity), resulting in shorter runtimes and better
migration plans. However, in systems with small files, care must be taken not to reduce the size
of the sampled system excessively, as this might result in an unfeasible ILP instance, or have
negative effects on the system’s balance after migration.

35

36

Chapter 7

Conclusions and open questions

We formulated the general migration problem for storage systems with deduplication, and pre-
sented two algorithms for generating an efficient migration plan. Our evaluation showed that
the greedy approach is the fastest but least effective, and that despite ILP’s premise of opti-
mally, the clustering-based approach has comparable results. Greedy’s migration plans can be
improved by using larger sample sizes. This is because Greedy both has short run times and
scales well in terms of run times. In the case of highly restrictive constraints on traffic and load
balancing, ILP results in the most optimal migration plan given enough time. In most cases it
is preferable to use the clustering-based approach.

Both our algorithms can be applied to more specific cases of migration, allowing further
optimizations in the future. For example, thanks to its short runtime, we can use Greedy to
generate multiple plans with different traffic constraints to allow multiple choices between the
tradeoffs these constraints have. In another specific case, files need to be migrated together since
they are logically dependant, for example all the files of a specific user. This specific case can be
solved without modifying the algorithm, simply by representing all the files of a single user as a
single file. In a more difficult case where the logically dependant files do not start in the same
volume, an addition of a constraint for dependant files can be inserted, forcing the solution to
migrate dependant files to the same volume.

Our ILP model created for the problem we presented in this work is highly restrictive in
terms of possible migrations. However, relaxations could be applied to the model in order to
reduce the size of the model. Future works could explore relaxations to our model and their
effects on ILP both in runtime and in possible improvement of the results due to a more heuristic
approach, as we’ve seen is preferable.

Despite the fact that the migration problem presented in this work makes no assumptions
regarding the system other than deduplication, there is a more general problem scenario where
data is dynamically added or deleted to the system, as opposed to remaining static as it is in
our model. The migration problem of dynamic systems is likely to be more difficult to apply to
the ILP based approach than to the Greedy approach, since it requires a model for the entire
system to be applied.

The different advantages and disadvantages in the three algorithms presented in this work
might motivate a hybrid algorithm for migration, one that utilizes the strengths of all three
algorithms. The simplest implementation of this would be prepossessing the system to infer

37

which algorithm would be best suited for it and then using the unaltered algorithm that was
chosen.

38

Bibliography

[AAA+10] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula Balachandran, Pushkar
Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and George Varghese.
EndRE: An end-system redundancy elimination service for enterprises. In 7th
USENIX Conference on Networked Systems Design and Implementation (NSDI
10), 2010.

[Aba89] Jeph Abara. Applying integer linear programming to the fleet assignment problem.
Interfaces, 19(4):20–28, 1989.

[ADK+18] Yamini Allu, Fred Douglis, Mahesh Kamat, Ramya Prabhakar, Philip Shilane, and
Rahul Ugale. Can’t we all get along? Redesigning protection storage for modern
workloads. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
2018.

[AHH+01] Eric Anderson, Joseph Hall, Jason D. Hartline, Michael Hobbs, Anna R. Karlin,
Jared Saia, Ram Swaminathan, and John Wilkes. An experimental study of data
migration algorithms. In 5th International Workshop on Algorithm Engineering
(WAE 01), 2001.

[AHK+02] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal,
and Alistair Veitch. Hippodrome: Running circles around storage administration.
In 1st USENIX Conference on File and Storage Technologies (FAST 02), 2002.

[BELL09] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long, and Mark Lillibridge. Ex-
treme binning: Scalable, parallel deduplication for chunk-based file backup. In
IEEE International Symposium on Modeling, Analysis Simulation of Computer
and Telecommunication Systems (MASCOTS 09), 2009.

[BLC14] Bharath Balasubramanian, Tian Lan, and Mung Chiang. SAP: Similarity-aware
partitioning for efficient cloud storage. In IEEE Conference on Computer Com-
munications (INFOCOM 14), 2014.

[CAVL09] Austin T. Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li. Decentral-
ized deduplication in SAN cluster file systems. In 2009 Conference on USENIX
Annual Technical Conference (USENIX 09), 2009.

[clu] Cluster analysis. https://en.wikipedia.org/wiki/Cluster_analysis. Ac-
cessed: 2020-10-24.

39

https://en.wikipedia.org/wiki/Cluster_analysis

[CLZ11] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL: A content-aware flash trans-
lation layer enhancing the lifespan of flash memory based solid state drives. In 9th
USENIX Conference on File and Stroage Technologies (FAST 11), 2011.

[CPL] CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer. Accessed:
2018-10-24.

[DDL+11] Wei Dong, Fred Douglis, Kai Li, Hugo Patterson, Sazzala Reddy, and Philip Shi-
lane. Tradeoffs in scalable data routing for deduplication clusters. In 9th USENIX
Conference on File and Stroage Technologies (FAST 11), 2011.

[DDS+17] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony Wong, Shiqin Yan, and Fabi-
ano Botelho. The logic of physical garbage collection in deduplicating storage. In
15th USENIX Conference on File and Storage Technologies (FAST 17), 2017.

[DGH+09] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kil-
ian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu, and Michal
Welnicki. HYDRAstor: A scalable secondary storage. In 7th Conference on File
and Storage Technologies (FAST 09), 2009.

[DJS+19] Abhinav Duggal, Fani Jenkins, Philip Shilane, Ramprasad Chinthekindi, Ritesh
Shah, and Mahesh Kamat. Data Domain Cloud Tier: Backup here, backup
there, deduplicated everywhere! In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019.

[DSL10] Biplob Debnath, Sudipta Sengupta, and Jin Li. ChunkStash: Speeding up in-
line storage deduplication using flash memory. In 2010 USENIX Conference on
USENIX Annual Technical Conference (USENIX ATC 10), 2010.

[ESSY22] Nadav Elias, Philip Shilane, Sarai Sheinvald, and Gala Yadgar. DedupSearch:
Two-Phase deduplication aware keyword search. In 20th USENIX Conference
on File and Storage Technologies (FAST 22), pages 233–246, Santa Clara, CA,
February 2022. USENIX Association.

[FFH+14] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia, Fangting Huang,
and Qing Liu. Accelerating restore and garbage collection in deduplication-based
backup systems via exploiting historical information. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14), 2014.

[FSL] Traces and snapshots public archive. http://tracer.filesystems.org/. Accessed:
2018-10-24.

[GE11] Fanglu Guo and Petros Efstathopoulos. Building a high-performance deduplication
system. In 2011 USENIX Conference on USENIX Annual Technical Conference
(USENIX ATC 11), 2011.

[GNU] GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/glpk/.
Accessed: 2018-10-24.

40

[GP13] Michael Greenacre and Raul Primicerio. Hierarchical Cluster Analysis. Fundación
BBVA, Bilbao, 2013.

[Gur] The fastest mathematical programming solver. http://www.gurobi.com/. Ac-
cessed: 2018-10-24.

[GWM07] Ron Gabor, Shlomo Weiss, and Avi Mendelson. Fairness enforcement in switch on
event multithreading. 4(3):15–es, September 2007.

[HHS+19] Danny Harnik, Moshik Hershcovitch, Yosef Shatsky, Amir Epstein, and Ronen
Kat. Sketching volume capacities in deduplicated storage. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19), 2019.

[HSX+12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in Windows Azure Storage.
In 2012 USENIX Annual Technical Conference (USENIX ATC 12), 2012.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

[KBKD12] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kilian, and Cezary Dubnicki.
Reducing impact of data fragmentation caused by in-line deduplication. In Pro-
ceedings of the 5th Annual International Systems and Storage Conference (SYS-
TOR 12), 2012.

[KK] Roei Kisous and Ariel Kolikant. Source code of migration algorithms. https:
//github.com/roei217/DedupMigration. Accessed: 2022-02-22.

[KKD+22] Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar.
The what, the from, and the to: The migration games in deduplicated systems.
In 20th USENIX Conference on File and Storage Technologies (FAST 22), Santa
Clara, CA, February 2022. USENIX Association.

[LAW02] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online data
migration with performance guarantees. In 1st USENIX Conference on File and
Storage Technologies (FAST 02), 2002.

[LEB+09] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg
Trezise, and Peter Camble. Sparse indexing: Large scale, inline deduplication
using sampling and locality. In 7th Conference on File and Storage Technologies
(FAST 09), 2009.

[LEB13] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. Improving restore speed
for backup systems that use inline chunk-based deduplication. In 11th USENIX
Conference on File and Storage Technologies (FAST 13), 2013.

[Lin] Linux Kernel Archives. https://mirrors.edge.kernel.org/pub/linux/
kernel/.

41

https://github.com/roei217/DedupMigration
https://github.com/roei217/DedupMigration
https://mirrors.edge.kernel.org/pub/linux/kernel/
https://mirrors.edge.kernel.org/pub/linux/kernel/

[LLD+14] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wallace. Migratory
compression: Coarse-grained data reordering to improve compressibility. In 12th
USENIX Conference on File and Storage Technologies (FAST 14), 2014.

[lps] Introduction to lp_solve 5.5.2.5. http://lpsolve.sourceforge.net/5.5/. Accessed:
2018-10-24.

[LSD+14] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and
Grant Wallace. Nitro: A capacity-optimized SSD cache for primary storage. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014.

[Man94] Udi Manber. Finding similar files in a large file system. In USENIX Winter 1994
Technical Conference (WTEC 94), 1994.

[MB11] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication. In
9th USENIX Conference on File and Stroage Technologies (FAST 11), 2011.

[MCM01] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth
network file system. In 18th ACM Symposium on Operating Systems Principles
(SOSP 01), 2001.

[MHS18] Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shinagawa. The quick migra-
tion of file servers. In 11th ACM International Systems and Storage Conference
(SYSTOR 18), 2018.

[NEF+12] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann, Jon Howell,
and Yutaka Suzue. Flat datacenter storage. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12), 2012.

[NK13] P. C. Nagesh and Atish Kathpal. Rangoli: Space management in deduplication
environments. In 6th International Systems and Storage Conference (SYSTOR
13), 2013.

[NSKY21] Aviv Nachman, Sarai Sheinvald, Ariel Kolikant, and Gala Yadgar. GoSeed: Op-
timal seeding plan for deduplicated storage. ACM Trans. Storage, 17(3), August
2021.

[RH02] Alexander Richards and Jonathon P. How. Aircraft trajectory planning with col-
lision avoidance using mixed integer linear programming. Proceedings of the 2002
American Control Conference (IEEE Cat. No.CH37301), 3:1936–1941 vol.3, 2002.

[RSG+13] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur,
and Kannan Ramchandran. A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the Facebook warehouse
cluster. In 5th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 13), 2013.

42

[SBGV12] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti. iDedup:
Latency-aware, inline data deduplication for primary storage. In 10th USENIX
Conference on File and Storage Technologies (FAST 12), 2012.

[SCJ16] Philip Shilane, Ravi Chitloor, and Uday Kiran Jonnala. 99 deduplication prob-
lems. In 8th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), 2016.

[SNI] SNIA IOTTA Repository. http://iotta.snia.org/tracetypes/6. Accessed:
2018-10-24.

[SYM] SYMPHONY development home page. https://projects.coin-
or.org/SYMPHONY. Accessed: 2018-10-24.

[TAB11] Nguyen Tran, Marcos K. Aguilera, and Mahesh Balakrishnan. Online migration
for geo-distributed storage systems. In 2011 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC 11), 2011.

[WBMM06] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. CRUSH:
Controlled, scalable, decentralized placement of replicated data. In ACM/IEEE
Conference on Supercomputing (SC 06), 2006.

[XJF+14] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou. Ddelta: A
deduplication-inspired fast delta compression approach. Performance Evaluation,
79:258 – 272, 2014. Special Issue: Performance 2014.

[XZJ+16] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing Liu,
and Yucheng Zhang. FastCDC: A fast and efficient content-defined chunking ap-
proach for data deduplication. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), 2016.

[YJTL16] Zhichao Yan, Hong Jiang, Yujuan Tan, and Hao Luo. Deduplicating compressed
contents in cloud storage environment. In 8th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 16), 2016.

[zCWWD18] zhichao Cao, Hao Wen, Fenggang Wu, and David H.C. Du. ALACC: Accelerat-
ing restore performance of data deduplication systems using adaptive look-ahead
window assisted chunk caching. In 16th USENIX Conference on File and Storage
Technologies (FAST 18), 2018.

[ZLP08] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in the
Data Domain deduplication file system. In 6th USENIX Conference on File and
Storage Technologies (FAST 08), 2008.

[ZSW16] Yanhua Zhang, Xingming Sun, and Baowei Wang. Efficient algorithm for k-barrier
coverage based on integer linear programming. China Communications, 13(7):16–
23, 2016.

43

http://iotta.snia.org/tracetypes/6

[ZWM13] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. Coverage-based
trace signal selection for fault localisation in post-silicon validation. In Hardware
and Software, Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pages 132–
147, Germany, 2013. Springer Verlag. Copyright: Copyright 2021 Elsevier B.V.,
All rights reserved.; 8th International on Hardware and Software: Verification and
Testing, HVC 2012 ; Conference date: 06-11-2012 Through 08-11-2012.

44

את מסיים אינו המקבצים מבוסס האלגוריתם האחסון. גודל הקטנת מבחינת יותר טובות תוצאות הינן לפעמים

על המבוסס האלגוריתם של הארוכים הריצה לזמני מגיע אינו אך החמדן, האלגוריתם כמו שניות במספר ריצתו

.ILP

iii

המגרציה בעיית השיקולים. בין לתעדף מערכת למנהל שמאפשר מה הפתרונות, מרחב על ישיר באופן משפיעה

עומסים איזון באילוצי לעמוד בכדי יעד, חלק ולאיזה מקור חלק מאיזה להעביר קבצים איזה למצוא היא כך אם

נתונים. לאחסון המשמש המערכת של האחסון גודל את שיותר כמה להקטין וכדי פס ורוחב

אלגוריתם הוא הראשון יעילה. מגרצייה תוכנית ליצירת חדשים אלגוריתמים שני זו בעבודה מציגים אנחנו

דדופליקציה. תחת מגרציה בנושא קודמת בעבודה שהוצג האיטרטיבי החמדן האלגוריתם בסיס על הבנוי חמדן

שרוחב מבטיח שהוא בזמן המערכת חלקי בין שווה באופן הנתונים את מחלק שלנו המורחב החמדן האלגוריתם

הזה התהליך פיצול ידי על להן. המורשה המקסימלי הפס רוחב על עולה אינו הללו בההעברות המשומש הפס

לאיזון הן משמש המוקצה הפס שרוחב מבטיחים אנחנו האחסון, מיטוב ושלב העומסים איזון שלב שלבים: לשני

נתונים. לאחסון המשמש האחסון גודל להפחתת והן עומסים

בעיית את פותר אשר אלגוריתם ,GoSeedב ILP על המבוסס האלגוריתם בסיס על נבנה שלנו השני האלגוריתם

בפס רוחב את המבטאים ואילוצים משתנים עם GoSeedב ILPה בעיית את מחדש כאן מנסחים אנחנו הזריעה.

מגרציית לבעיית שלנו הניסוח יועברו. קבצים ואליהם מהם החלקים בחירת ואת ההעברות בזמן המשמש

מקרה הינה אשר הזריעה לבעיית נדרש היה אשר מהניסוח מורכב יותר טבעי באופן הוא הכללית הנתונים

בעיית על שלנו הניסוח את בהצלחה יישמנו זו, מורכבות למרות הנתונים. מגרציית בעיית של מוגבל מאוד פרטי

ייחודיים. נתונים גושי מיליוני מאות בעלות מערכות של נתונים מגרציית

בעזרת דדופליקציה תחת למערכות הנתונים מגרציית בעיית לפתרון דומה לעבודה במקביל נעשתה זו עבודה

בעיקר הושוו זו בעבודה המוצגים ILP ואלגוריתם החמדן האלגוריתם .Cluster מקבצים: מבוסס אלגוריתם

הבעיה. על הנחות אותן את מבצעים האלגוריתמים וכל מאחר זאת המקבצים, מבוסס לאלגוריתם

(2 UBC (1 נתונים: מערכי משלושה שנוצרו מערכות שש על שלנו האלגוריתמים שני את והשוונו יישמנו אנחנו

באופן להפחית מסוגלים האלגוריתמים שכל מראות שלנו התוצאות .Linux של הפעלה מערכות גרסאות (3 FSL

האלגוריתמים בין ההשוואה העומסים. ואיזון הפס רוחב אילוצי על שומרים שהם בזמן המערכות גודל את מוצלח

שונים. וחסרונות ייתרונות ישנם האלגוריתמים משלושת אחד שלכל מראה

זמני הם אלו ריצה זמני הקבצים. להעברת מגרציה תוכניות שניות במספר ליצור מסוגל החמדן האלגוריתם

ריצה שעות מספר לפחות דורשים אשר האחרים האלגוריתמים שך הריצה מזמני יותר נמוכים משמעותית ריצה

מהגדלת פחות הכי מושפעים החמדן האלגוריתם של הריצה זמני ריצה. של ימים למספר להגיע אף ויכולים

החסרון המערכת. גודל הגדלת עם גודל בסדרי גדלים האחרים האלגוריתמים של הריצה שזמני בזמן המערכת

החמדן האלגוריתם של המיגרציה מתוכניות המושגת המערכת גודל שהפחתת הוא החמדן האלגוריתם של הבולט

האלגוריתמים. על מבין ביותר הקטנה כלל בדרך היא

מסוגל ILP על המבוסס האלגוריתם הפס. רוחב את ביותר היעיל באופן לנצל יכול ILP על המבוסס האלגוריתם

האחרים שהאלגורתמים בזמן המערכת, על מגבילים מאוד אילוצים ישנם בהם מקרים טובה בצורה לפתור

איזון נדרש לא בה לבעיה הבעיה מרחב של הקלה אלו. במקרים טובים פחות משמעותית פתרונות מציעים

ריצה זמני הוא ILP על המבוסס האלגוריתם של החסרון .ILP אצל ביותר המשמעותי לשיפור מביאה עומסים

כך כל הם ILP על המבוסס האלגוריתם של הריצה זמני האחרים. מהאלגוריתמים גדולים יותר משמעותית

מגיע והאלגוריתם במידה אלו, זמן מגבלות האלגוריתם. לריצת זמן במגבלות שימוש מצריכים שהם גבוהים

נעצר בה נקודה אותה עד שמצא ביותר הטובה המיגרציה תוכנית את להחזיר האלגוריתם את מכריחות אליהן,

זמן. מגבלת ללא להשיג היה יכול אותה האופטימלית המיגרציה תוכנית את ולא

ILP על המבוסס האלגוריתם של והחסרונות היתרונות בין איזון להשיג מצליח המקבצים מבוסס האלגוריתם

ואף ILP ידי על המושגות לאלו משתוות המקבצים מבוסס האלגוריתם של התוצאות החמדן. והאלגוריתם

ii

תקציר

מאחסנות. שהן הנתונים גודל את להקטין כדי בדדופליקציה משתמשות רבות היקף רחבות אחסון מערכות

במצביעים אותם ומחליף השונים בקבצים נתונים של כפולים בלוקים מזהה אשר תהליך הוא הדדופליקציה תהליך

עליה גורר המערכת בגודל הפחתה לצורך בדדופליקציה שימוש במערכת. השמור הבלוק של ייחודי להעתק

המשתמשות אחסון במערכות נתונים של ומחיקה כתיבה הקריאה, שמורכבות בזמן המערכת. במורכבות

אחסון מערכות של הניהולי התחום מסחריות, ומערכות אקדמאים מחקרים מאוד בהרבה טופלה בדדופליקציה

התייחסות. דורש עדיין שירות, ועלות איכות מטמונים, קיבולת, תכנון כמו היקף, רחבות

המשתמשת אחסון מערכת של שונים חלקים בין קבצים של העברה נתונים: במגרציית מתמקדת זו עבודה

עצמאים שרתים מספר או היקף רחבת אחסון מערכת בתוך יחיד שרת לייצג יכול "חלק" בדדופליקציה.

או קיבולת למגבלת חלקים של מהגעתם כתוצאה לעבור יכולים קבצים נתונים. למערך או ללקוח המיועדים

האחסון. במערכת אחר בקבוק צוואר של להיווצרותו

קלאסיות. אחסון במערכות קיימים אינם אשר למגרצייה הקבצים בבחירת חדשים שיקולים מציגה דדופליקציה

יכולים מהבלוקים חלק מקום, עובר קובץ כאשר הקבצים, בין התלויות בשל דדופליקציה, תחת אחסון במערכות

באופן מיקום. באותו אחר לקובץ שייכים להיות עדיין עלולים אחרים שבלוקים בזמן המקורי ממיקומו להימחק

להיות כבר עשויים אחרים שבלוקים בזמן המגרצייה של היעד למיקום העברה דורשים מהבלוקים חלק דומה,

במיקום השמור העותק את למחוק שניתן ייתכן גם העתקה, יצריכו שלא רק שלא כך ההעברה לפני שם שמורים

אליו הראשון השיקול סותרים. שיקולים מספר בין אופטימזציה לבצע נדרשת יעילה מגרצייה תוכנית המקורי.

להפחית. יש אותו המאוחסנים הנתונים של הפיזי הגודל של השיקול הוא קודמים המחקרים רבות התייחסו

של השיקול הוא השלישי השיקול השונים. המערכת חלקי בין העומסים איזון של השיקול הוא השני השיקול

בו להשתמש שיתאפשר פס רוחב של מסויים גודל קיים עצמן, ההעברות בזמן שימוש בו שיעשה הפס רוחב

המיגרציה. תכנית ביצוע לצורך

הפתרונות דדפוליקציה, תחת במערכות הנתונים מגרציית לבעיית המתייחסים מחקרים מספר קיימים שאכן בזמן

ללא הכללית הבעיה את פותרים או הזריעה, בעיית כמו הבעיה, של מוגבלים מאוד מקרים פותרים או הקיימים

המאוחסנים. הנתונים של הפיזי הגודל בהקטנת רק זאת במקום ומתמקדים השיקולים לכלל התייחסות

חלקים שני קיימים הזריעה בבעיית הכללית. הנתונים מגרציית בעיית של מוגבל מקרה הינה הזריעה בעיית

לעבור יכולים וקבצים נתונים ללא מתחיל היעד יעד. מהווה שני וחלק מקור מהווה אחד חלק כאשר במערכת

השני. בכיוון ולא ליעד מהמקור רק

תחת במערכות הנתונים מגרציית בעיית של הכללי למקרה הן הראשונה בפעם מתייחסים אנו זו בעבודה

באופן המגרצייה בעיית של פורמלי בניסוח מתחילים אנחנו פס. ורוחב עומסים איזון לשיקולי והן דדופליקציה

מוסיפים אנו המערכת. של האחסון גודל הקטנת היא העיקרית שמטרתה מגרציה כבעיית שלה, ביותר הכללי

נאכפות הללו המגבלות שבהן הנוקשות המגרצייה. לתוכניות כאילוצים העומסים ואיזון הפס רוחב שיקולי את

i

טאוב. ומרילין הנרי ע"ש המחשב למדעי בפקולטה ידגר, גלה דוקטור של בהנחייתה בוצע המחקר

במהלך ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של המחקר תקופת

Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar. The what, the from,
and the to: The migration games in deduplicated systems. To appear in the Special Section on FAST
22 in the Transaction on Storage.
Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar. The what, the from,
and the to: The migration games in deduplicated systems. In 20th USENIX Conference on File and
Storage Technologies (FAST 22), Santa Clara, CA, February 2022. USENIX Association.

למדע הלאומית הקרן ידי על נתמך זה מחקר בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

. (807/20 מס. (מענק

עם אחסון במערכות ILP מבוסס עומסים איזון
דדופליקציה

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

קוליקנט אריאל

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2022 ספטמבר חיפה התשפ"ב תמוז

עם אחסון במערכות ILP מבוסס עומסים איזון
דדופליקציה

קוליקנט אריאל

