Experience from Two Years of Visualizing Flash
with SSDPlayer

Gala Yadgar and Roman Shor
Computer Science Department, Technion
Email: {gala,shromah@cs.technion.ac.il

Abstract—Data visualization is a thriving field of computer trigger the creation of replicas or other forms of redunganc
science, with widespread impact on diverse scientific diguiines, \jsualization is a natural technique for understanding the
from medicine and meteorology to visual data mining. Advanes effects and implications of these processes. In this paper,

in large scale storage systems, as well as low level storageh- f flash b d st ne examble of th molexit
nology, played a significant role in accelerating the appliability OCus on Tlash based storage as one example o the complexity

and adoption of modem visualization techniques. Ironicdl, “the ~ Of modern storage architectures. _ _
cobbler's children have no shoes” researchers who wish to Data on flash devices moves to a different location whenever

analyze storage systems and devices are usually limited to aijt js updated: the data is written again on a clean page, and
variety of static histograms and basic displays. the previous data location is marked as invalid. Tesh

The dynamic nature of data movement on flash has motivated
the introduction of SSDPlayer, a graphical tool for visualzing translation layer (FTL)is responsible for mapping logical

the various processes that cause data movement on SSDs. m’idc_lres_ses to physical pages. Tderbage CO”?CtiOTPVOCGS_S
2015, we used the initial version of SSDPlayer to demonstrat maintains a pool of clean blocks by occasionally erasing a

how visualization can assist researchers and developers their plock with mostly invalid pages after copying its valid page

””deertagdi“g of ”?Sosdgg‘l' Comflex ﬂalsh'.based systems. V]Ybiwg. to another available block. These internal writes are aToth
continued to use ayer for analysis purposes, we found i .
extremely useful for education and presentation purposessawell. cause for data movement throughout the device.

In this paper, we describe our experience from two years of lig, Many FTL optimizations incur additional internal data
sharing, and extending SSDPlayer, and how similar technigegs movement. Examples include wear leveling [7], merging of

can further advance storage systems research and education |og blocks [8], partition resizing [9], and parity updatd<].
Quantifying these additional writes is important for arzityg
the effect of such optimizations on the performance and
Data visualization refers to applying meaningful geoneetrdurability of the flash device. However, doing so is not alsvay
or visual encoding to otherwise “non-visual” data, and is thtrivial and requires a deep understanding of the intergctin
focus of numerous academic studies and commercial praduses of data movement within each device.
ucts [1]-[6]. Early visualization techniques, such asistiagl Currently available simulators [7], [11] output intern#his
maps, scatter plots, and histograms, still form the basis arfid statistics in the form of lists, tables and histogramsnf
fundamental research and presentation tools. However; tewhich deriving internal processes is cumbersome and regjuir
nological advances and new techniques allow researchersigreat deal of skill and imagination. Basic hardware evalua
many disciplines to use increasingly powerful tools to gi&ze tion boards [12] provide similar output, while advanced ®ne
large scale and complex data. Special attention is giveheo fprovide graph output of block level reliability tests [1SD
ability to dynamically control the way data is displayed, byptimization tools provide fragmentation information [14
interactive zooming, filtering, distortion and aggregatio S.M.A.R.T statistics and block update frequency [15]. How-
Ironically, the analysis of the systems and architectunas t ever, complicated flash processes cannot be understood from
facilitate these advances is still limited to basic viszaiion these aggregated statistics. Furthermore, these toolsnare
in the form of many types of graphs and histograms. In thiended for off-the-shelf SSDs, and cannot be used for relsear
context, analyzing the state of the data within storageesyst prototypes.
and devices is especially difficult: the illustration of @ate- The increasing complexity of state-of-the-art flash man-
quentiality on hard drives using various defragmentattmis agement motivated us to introduce data visualization princ
is just about the only well-known example. Unfortunatelyples to storage systems research and analysis. We developed
this static representation does not capture some of thermafSDPlayeran open source graphical tool for visualizing data
phenomena in modern storage systems. layout and movement on flash devices, and presented its
Storage systems are designed to dynamically adjust ibdtial version in the 7th USENIX Workshop on Hot Topics in
changing workload characteristics and system conditiortorage and File Systems (HotStorage '15) [16]. The feddbac
Thus, data may migrate between storage nodes for load received from the workshop attendees, as well as from our
balancing, or between storage hierarchies according to dslleagues, inspired us to extend the interactive featirres
popularity. Background deduplication may eliminate lagic SSDPlayer and the complexity of the devices it can display.
copies of data, while changing availability requirementym It also encouraged our use of SSDPlayer for educational

I. INTRODUCTION

chip extended to process different trace formats. Alternatjvel
oo synthetic access distributions can be added by extendig th
. % workload generator. The basic histograms can be extended to
.. page display additional aggregated statistics.
Our goal of keeping SSDPlayer as simple and easily

[ETL_v](input v] &I (0] —gmemme extendible as possible led to several design choices. Most
Valid Histogram ~Write Amplification of the complexity of full scale simulators is due to accu-

rate performance modeling that takes into account numerous

L | T device-specific parameters. Thus, we implemented SSDiPlaye
Fig. 1. SSDPlayer display (simplified) from scratch, focusing on write-only workloads, and only on

the way data moves, regardless of how much time it takes.
Hoyvever, it can be extended to provide performance analysis

presentation of new ideas and designs in academic confd- adding delays_ during time-cor)suming operations.sych as
ences and industrial collaboration meetings. In this paper €faSures and copies, or by collecting the relevant stistid

describe our experience from two years of visualizatioong! presentlrllg them as a hlstograrg or affmal output f|Ie|. _
with our insights into how it can advance storage system >>PPlayer supports two modes of operationsimulation
research. mode, it simulates the chosen FTL on a raw /O trace or on

The rest of this paper is organized as follows. We irf synthetic workload, illustrating the SSD state at each.ste

troduce the basic features and structure of SSDPIayer jjiiS illustration is continuous, thus forming a “clip” of &h
movements that take place during execution. This mode

Section Il. We then take a close look at several use cases _ i 4 .
demonstrate the different aspects of visualization inagrer 'S USeful for testing and analyzing various features withou
&h before, implementing them in a full scale simulator or

system analysis. Section Ill describes our experience fr q latf
using SSDPlayer for educational purposes. In Section Ik\V?r ware pat_orm.) ,
we describe our experience from presenting complex idead" visualizationmode, SSDPlayer illustrates operations that

and designs. Section V describes some of the feedback mre_performeq on an upstream simulator or device. The input
||thh|s mode is an output trace generated by a simulator,

received from colleagues and conference participants ah q uati latf host level FTL. d i
how this feedback was incorporated into the new version prdware evaluation platiorm, or a host leve » desogol

SSDPlayer. We describe some of our research experience Vit P2SIC Iop(_ararions that werﬁ pgrfolrlmed on thehflash de;:ce -
SSDPIlayer in Section VI, and provide additional notes tgwise"ting a logical page to a physical location, changing kloc

and developers in Section VII. We discuss related work onate, etc. This mode is useful for lllustr.atmg procesmg t
visualization in Section VIII, and conclude in Section |xoceur in complex research and production systems, without

Throughout this paper, we refer the reader to one-minR8Ming theirenti_re set _of feature_s into _SSDPIayer. We demo
clips that were generated with SSDPlayer for demonstratighate the benefit of this mode in Section 1V,

purposes and are available on the SSDPlayer wébsite The SSDPlayer display, depicted in Figure 1, is organized
into chips, planes, blocks and pages, as specified by the user

1. SSDR.AYER at startup. Colors and textures are used to represent page an

SSDPIayer is an open source project. Thanks to its flexidick properties, such as data ‘temperature’ or valid page
structure, a wide range of functionalities can be added §8UNt- A page’s properties and state determine its fill color
it in a straightforward manner. These include many recenfigxture, and frame color. A block’s properties determirge it
suggested FTL optimizations, including wear leveling, Gpagpackgrqund and frame coIors._ Note that the page aqd block
mapping, and garbage collection algorithms. Users caryeadifoPerties need not necessarily match. Aggregated informa
modify the graphical parameters to visualize the concegt@n such as write amplification is displayed in continugusl
they are interested in and display the details and statistidodated histograms, illustrating how the device’s statnges

relevant to their analysis. We describe several such sanaPVer time. .
and additions in the following sections. There is a tradeoff between the complexity and number

We implemented SSDPlayer in Java in order to maximi& details displayed, and how easily the visualized prazess
portability and minimize platform-specific dependencitis. €@n be identified and interpreted. Thus, while there is no
is designed to provide the most general SSD functionalifygStriction on the complexity of the FTL schemes implemente
in order to allow easy extensions and additions for a wid&thin SSDPlayer, users must carefully choose the size of
range of capabilities. The basic flash components — e.ge,page visualized device and which page and block attributes to
block, page mapping and garbage collection — are implerdenfiiSPlay- _ _
as abstract classes that can be extended according to tHeOr demonstration purposes, we normally use a ‘toy’ device
desired FTL functionality. The simulation and visualipati Of 2K pages. A device of up to 12K pages can be viewed

components are similarly flexible: the trace parser can Hefull detail on a regular HDTV screen. SSDPlayer handles
larger devices of more than 250K pages by adjusting the level

Lhttp://ssdplayer.cswp.cs.technion.ac.il/ of detail presented. A subset of the device’s planes or chips

purposes in undergraduate courses and projects, and for

http://ssdplayer.cswp.cs.technion.ac.il/

can be viewed in full detail while the simulation continues (@) Uniform R R T
to update the state of the entire device. Alternatively, the Valid count =11 b od s
entire device can be viewed by omitting fill texture and by Erase count =18

aggregating the presentation of an entire block’s pagesiné

smaller rectangle. SSDPlayer allows to dynamically zoam-i (b) Zipf
and zoom-out between several levels of detail and different Valid count =18
aggregation criteria. We describe this option in greateaitle Erase count =21
in Section V.

Fig. 2. Close-up of one block at the end of ti&reedy-Uniform(a)

I1l. AN EDUCATION USE CASE WRITE AMPLIFICATION and theGreedy-Zipf(b) demos. The pages that were copied to a clean

We orignally used SSDPayer to ilustate data movemelifek 111 P15 dabage coletons e Tled wieciere
with uniform workloads, where it is well-understood, and tQagits in a higher valid count and more erasures.
show how a visual illustration can shed some light on the
non-uniform case, where data movement is complex and not))])
fully understood. In the process of generating the resgecti !N the Greedy-Uniformdemo, this basic FTL is executed
demos, we identified their potential for illustrating evére t With @ small SSD and a uniform random workload. This clip
basic concepts of garbage collection and write amplificatiGnows that shortly after the SSD's logical capacity is filke
for students who are encountering them for the first time. @frbage collection beginblinValid stabilizes at 10-11 pages.
this section, we describe these concepts and our experiehb& Portion of each block that is taken up by valid pages
in using SSDPlayer to illustrate them in the context of undelfansferred at garbage collection is clearly visible trsaik
graduate courses and projects. their different pattern.

SSD basic design conceptslpdates in SSDs are performed We use the same SSD and FTL with a Zipf workload. The
out-of-place: the previous data location is marked as idyal Greedy-Zipfdemo shows thalinValid converges more slowly
and the data is written again on a clean page. To accommociité at a higher value of 15-16 pages. The reason is that cold
these writes, some physical storage capacity is not indudeages that are rarely updated remain valid during consecuti
in the device's exported logical capacity. Thus, the desicedarbage collection invocations. As a result, write ampaifien
overprovisionings defined asT—TU, whereT andU represent increases, leaving less space available in the erasedsbiock
the number of physical and logical blocks, respectively][17invalid copies of hot pages, thus causing even more frequent
The FTL is responsible for mapping logical addresses @srbage collection, and so on. This phenomenon is grapical
physical pages. visible as a dense groupingiofzalid (X) marks on the plainly

The garbage collection process is invoked whenever tfited pages that represent user writes. Figure 2 illussrétes
number of clean blocks drops below a certain thresholr one block.

Garbage collection is typically performedeedily picking the ~ The Greedy-Sequentialemo is designed to show the best-
block with the minimumvalid count(the lowest number of case scenario of garbage collection and write amplification
valid pages) as the victim forleaning The valid pages are With a completely sequential workload, the demo shows
moved—read and copied to another available block, and thépat MinValid is always zero and the write amplification is
the block is erased. These additional internal writesreteto always one, and that garbage collection does not genergte an
aswrite amplification delay the cleaning process, and requiréjternal writes. This is a trivial result in terms of workiba
eventually, additional erasures. and performance analysis, but is not completely obvious to

The most accurate formula for estimating the write amplgtudents who encounter these concepts for the first time.
fication with greedy garbage collection as a function of pageWe now use these demos regularly in an undergraduate
size and overprovisioning is that of Bux and lliadis [18].€h course on storage systems, where their contribution isciaof
derive the formula from a detailed analysis of the number &frst, explaining data movement and its effects while méfer
blocks with each valid count, and show that with a randofe an “animated” example that can be paused or rewinded is
uniform workload, the minimum valueMinValid) converges much easier for an instructor than appealing to the stutents
to a single value or to two consecutive values. Desnoyerk [Iifhagination or constructing a complex series of individual
performs a similar analysis which results in a formula whichlides. Second, as students assimilate the new concepts muc
is less accurate but can be calculated more easily. faster, they often raise issues that are beyond basic design

lllustration with SSDPlayer. The Greedy FTL in principles, such as wear leveling and possible optiminatio
SSDPlayer implements greedy garbage collection withit eaef greedy garbage collection. Thus, visualization helpsises
plane, and a page allocation scheme that balances the nuntigrlimited teaching hours more effectively, and to gereerat
of valid pages between planes. All pages have the same cotliscussion and interest in advanced related topics.
but the page fill changes to a checkered pattern if it has beeHands-on experience with SSDPlayer~or students who
copied to a new block during garbage collection. Invalidgsmgare interested in storage system design, we leverage the
are crossed out, but maintain their fill color and patterrilunflexible design of SSDPlayer to serve as a basis for undergrad
they are erased. uate projects. In these projects, students typically resmes

http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedysequential/

background on SSD design challenges [7], [10], and theredelmedium—alfter its cells argprogrammedto increase their
into the details of implementing additional FTLs or featirevoltage level, they must be erased prior to writing agairisTh
within SSDPlayer. These projects have been very successtunstraint motivates the use of out-of-place updates insSSD
and their products have been merged into the new versionvdiich incur additional internal writes and erasures.
the tool. Reusable SSD reduces the number of erasures by perform-
For example, one pair of students added the possibilityg additional writes on a block before it is erased. To penfo
to define breakpoint rules within the player, stopping th& second write, the logical page written by the user is emttode
simulation whenever a predetermined condition holds. & tlvith a special encoder that adds redundancy bits, proding
course of this project, they had to identify interestingrése output that is twice the page size and can be written on a pair
that could be triggers for analysis or debugging purposesf, physical pages that have already been programmed. The
such as the first invocation of garbage collection in a certagncoder guarantees that writing the new data will only nequi
plane or chip, or the first time the valid count or writdncreasing the cell voltage level, thus complying with slzral
amplification reach a certain value. Other projects’ goalfiash programming constraints. This condition is sufficient
such as displaying an info screen when the simulation aflow reuse of SLC flash pages. We thus refer to this scenario
paused, or dynamically switching between different zoowms “ideal” page reuse.
levels, required students to identify meaningful aggnegat Additional limitations apply to the reuse of MLC flash
metrics and possible inconsistencies between differemisFT pages, as a result of specific optimizations applied during
The RAID functionality, discussed in Section VI, was alspLC page programming. Page reuse is still possible, but
implemented as part of an undergraduate project. This girojeannot utilize all the block’s pages for two writes [20]. One
required a deep understanding of the different RAID levelpossible pattern for page reuse is the low-low-high (LLH)
the challenges in parity updates, and how they differ in SSIdgprogramming scheme [21], in which blocks are programmed
and in hard drives. in two rounds. In the first round, only the low pages are
SSDPlayer has become an integral part of our educatiopabgrammed as first writes. The second round takes plaage afte
tool box, where visualization is the fundamental contrilout most of these pages have been invalidated, and consists of
to its success. Entry-level students benefit from our ghitit programming the unused (high) pages for the first time, and
clearly illustrate basic design concepts. Students wh@sho reprogramming the invalidated low pages as second writes.
to specialize in the subject benefit from a simplified frameéwo The commonly used formula for write amplification cannot
that can be easily extended. More importantly, SSDPlaygé used when additional writes are performed before thekbloc
showsthem what is going on inside the device. This helps the@ erased. The derivation in [18] and [17] does not extend
understand the consequences of their design choices, andttgially to this case, because the number of additionatesri
their time effectively. We believe that visualization caelf that can be performed depends on the way invalid pages or
in a similar manner when teaching subjects such as cadiire blocks are reused. In fact, since some redundancy mus
replacement, paging, dynamic memory allocation, and largvays be added to the logical data to enable second writes,
cluster management, where data continuously moves from qRe conventional definition of write amplification does not
place to another. accurately represent flash utilization in this context. 3al
models, with varying degrees of complexity, were suggested
for analyzing the properties of second writes in various de-
We originally used SSDPIlayer to demonstrate the advantaggns [22]-[24]. We use SSDPlayer to show how a graphical
of visualization in the analysis of data movement in complghystration can provide important insights into such cdexp
FTL designs, such aReusable SS[L9], which reuses flash designs.
pages for additionalsecong writes before they are erased. presentation with SSDPlayer.The ReusableFTL imple-
The demo videos we generated turned out to be a valuaRignts ideal second writes in SSDPlayer. Each block is first
tool in presenting this and subsequent research results, bgritten normally by first writes. When it is chosen as viction f
to an academic audience in conferences and to practitionggshage collection, it is either erasedrecycled— allocated
within industry collaborations. In this section, we expléhe for second writes without erasdreUpon receiving a write
basic challenges in reusing flash pages, and show how we uggghmand, if a recycled block is available, a second write is
SSDPlayer to visualize our approach. performed on a pair of physical pages in the recycled block
Flash page reuseFlash pages are composed of floatingyhose data has been invalidated.
gate cells, whose voltage levels represent different bite&a pages are colored according to the write level of their laigic
Single-level flash cells (SLC) can store a single bit valu%age_ When a page is copied to a new block before erasure
1 (initially) or 0. Multi-level flash cells (MLC) support fau (gych copies are always performed as first writes), it maista
voltage levels, mapped to four two-bit values: 11 (in théiahi he color of itsoriginal write level, but changes its texture to

state), 01, 00 or 10. In MLC flash, the MSBigh) and the a1 of an internal write. Thus, the different colors repres
LSB (low) bits represented by the cell are each mapped to a

diﬁe_rent flash page. Thus, MLC_ﬂaSh blOCkS. are Co_mposedZThe detailed conditions for block recycling are specifiedtiey Reusable
of high and low pages, respectively. Flash is a write-on&sD design [19].

IV. A PRESENTATION USE CASEREPROGRAMMING

logging mechanism to the implementation in DiskSim, which
logs all physical write commands, garbage collection pro-
cedures, and state changes to a trace file. In the online
ParallelReusable-Zipfand ParallelReusable-MSRemos, we

use this trace file as input to SSDPlayer in visualization
mode to visualize the complex data movement in the full
Reusable SSD design with Zipf and real workloads [25], [26],
respectively. We used this demo for presenting Reusable SSD
at conferences, where it was especially useful for illustga
how all our design choices were combined within a complete
FTL implementation.

Visualization of LLH-FTL. LLH-FTL (Low-Low-High Re-
programming FTL)is a full FTL design that emerged from
Fig. 3. Reuse process of one block in théH-FTL-MSR demo. our detailed research Or,] MLC flash page reuse [20]. TO
When the block is allocated for future reuse, its state isnged accommodate second writes, LLH-FTL reserves some of its
to PartiallyUsed (a) and only its low pages are programmeeefg. blocks in apartially-usedstate where only their low pages are
When most of these pages are invalid, the block is allocated fused. A partially-used block can be reused, in which case the
;ngsérgrsn ;g"ée(bfﬂ‘g‘%en% Itt% ﬁgﬁsﬁggég)érgspggfggrfgj é%?rﬂss FTL will reprogram all or some of the low pages and all the
time. The position of Ilow and high pages in this block repnes¢heir high pages. The r?‘%mber of partially-used blocks 'S_ corebll
layout in the OpenSSD hardware. by a set of conditions that balance reuse potential and the

availability of overprovisioned space. To dynamically wesd]
e@eir number, the FTL can forego recycling of a partialyeds
block, and instead program the high pages and leave the low

(a)
State=PartiallyUsed

(®)
State=Reused

the portion of the data written in first and second writ
within both user and internal writes. In addition, we repldc) X
the write amplification histogram with one showithggical pages untouched unt[l the block is e_rased.)
writes per erasureWith N pages per block and first writes Our research consisted o_f a full implementation OT LLH-
only, N logical writes per erasure are equivalent to a writETL on the OpenSSD_Jasmme_board [.12] for evalu_atlon. we
amplification of 1. With second writesy x 1.5 logical writes /S0 Used an adaptation of this FTL implementation as an
per erasure are the maximum value achievable when all pag&ulator for evaluating the effect of additional parametaat
ould not be modified on the hardware platform. We added a

are fully utilized for two writes, with no internal writes.) : . -
In the Reusabledemo. we run the Reusable ETL on 4099ing mechanism to this emulator that produced a similar

small SSD with N=32 and a Zipf workload. It shows thatoutput as the log of DiskSim described above, and we used

most of the pages are utilized for two writes, but that marf{)iS OutPut to generate thd H-FTL-MSRdemo. The lifecycle

of the logical pages written as second writes (blue) aré s f reused_ blocks is clearly illustrated: the high pages iema
valid when the block is erased and must be copied to'{lit¢ While they are partially used. The low, used (green)
clean block (checkered). This means that pages writterowith Pa9€s aré then reused and turn blue, while the clean (white)

prior erasure of the block end up occupying newly erasﬁ?‘ges are used for the first time. Figure 3 zooms in on one

blocks when they are copied, reducing the benefit from secoMgck during this process.
writes. Indeed, only 26 logical writes (out oWV x1.5=48 We used this demo to illustrate LLH-FTL at the conference

possible) are performed per erasure. Although this is mofgiere it was first presented. In subsequent, longer talks,
than the 17 writes per erasure achieved with first writes niy’e Played both this demo and that of Reusable SSD, to
flash utilization can clearly improve. We used this demo famPhasize the difference between ideal and practical page

a graduate course on coding theory, to illustrate the desigif'Se in real systems. Thus, our presentation consisted of a

challenges of performing additional writes and to motivatdsudlization of the same workload (the pvolume from
a theoretical model for analyzing and optimizing garbagd® MSR Cambridge collection [25], [26]) handled by two
collection in this context. ifferent FTL designs implemented on two different platfis:

Visualization of Reusable SSDThe full Reusable SSpD This Visualization complemented our theoretical analgsid
design is much more complex. It performs second writéyaluation results, by illustrating the applicability aslivas
in parallel to blocks in different planes, identifies coldtaia € limitations of our research results. .
without external tagging, and handles encoding failured an SSpPlayer has prqved a powerful tool for presenting com-
mapping constraints [19]. The implications of Reusable SSB¥X 1deas and designs to expert audiences in advanced
for device lifetime and performance have been thoroughfiUrSes. academic conferences, and collaborations wéth th
evaluated by a detailed implementation in DiskSim [7]. Industry. In this context, too, explaining the details of a
We took advantage of this implementation to illustratEOMPIEx design is much easier when a visualization of its

the full Reusable SSD design in SSDPlayer. We addedfyll implementation is playing in the background. This allo
us to use our presentation time effectively and engage our

3This value is derived fronMinValid=15 in the Greedy-Zipf demo. audience, who, in turn, can easily follow the details of our

http://ssdplayer.cswp.cs.technion.ac.il/demos/llh-ftl-msr/
http://ssdplayer.cswp.cs.technion.ac.il/demos/reusable/
http://ssdplayer.cswp.cs.technion.ac.il/demos/parallelreusable-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/parallelreusable-msr/
http://ssdplayer.cswp.cs.technion.ac.il/demos/llh-ftl-msr/

@
Valid count =3
Erase count =(

(b)
Valid count =10}
Erase count =2

(©) : e :
Valid count =1 it | 6l o]
Erase count =14 Average block temperature:
>4 s 7 ; I

Fig. 4. Close-up of one block during thdotCold-1demo with a Zipf
workload, tagged with 10 temperature ranges, where reds(iha
hottest and blue (10) is the coldest. The valid count is shathe
time when the block is chosen for the next erasure, whereeigigl
to MinValid. The MinValid pages that were copied to a clean block

during previous garbage collections (checkered pattawjram the — haition Each plane haB active blocks, on which pages of
coldest temperature ranges. This demo shows their poriieasing h - . h . lock is full

until it stabilizes at roughly half the block size. eac partlthn are written. W 'en an_a_lctlve block is full, avne

clean block is allocated for this partition. Greedy garbegle

. . . L . lection is used, determining partition sizes implicitlycacding
design. These benefits of visualization can also be gained f§

o ; o ; € gained@the number of writes with each temperature.
developers. and distributers in their interaction with BRgp Visualization with SSDPlayer. As a reference point, we
and potential customers.

first run theHotCold FTL with one partition and a Zipf work-

V. A EEEDBACK USE CASE HANDLING LARGE DEVICEs load where requests are tagged with ten different tempesitu

- The HotCold-1demo is essentially a replay of the demonstra-
. We originally used colors tq repres_ent page access frequg 6n in the Greedy-Zipfdemo (Figure 4 shows snapshots of
in SSDPIayer to show how simple visual aids can help clarify 6. piock in the device during this demo). It shows how

not only how data moves, but also why it moves. Wheg imple addition of colors can facilitate our understagadh

presenting our demos, we received valuable feedback "’}Hé process described in Section lll: before garbage dalec

advice on how to extend this concept to additional atmb”testarts, the red pages, which belong to the top five tempesatur

realistic device sizes, and additional architectures amdadns. g

Fig. 5. Zoom-out view of a 32K-page device in tharge-HotCold-5
demo. Aggregate information is displayed by coloring eatdtib
according to the average temperature of its pages.

0,
In this section, we demonstrate the benefit from using colo and only 2% of the data), occupy roughly half of each block,

(?presenting their portion of accesses in the trace. As the
in analyzing workloads and SSD performance, and how t . '
feedback from the community helped us improve SSDPla %rbage collection process advances, blue (cold) chetkere

y?,r . ; : ;
i this context. copied) pages occupy increasing portions of each blockt mo

. . of them remaining valid until the next garbage collection on
Hot and cold data separation. Separating hot and coIdthiS block g 9 9

data has been shown to reduce write amplification and, "€ \\hen we separate the data into two or three partitions,

spectively, garbage collection cos_ts anc_j cell wear [9]’]'[27vi/ observe a process similar to that in tHetCold-1demao,
Desnoyers [27] analyzes cases in which the hot and C%gcause within each partition, pages are still accessddawit

portions (.)f 'Fhe _Workload are each acces_,sed with d|ff_e r(':‘He‘latively high skew. However, this behavior changes when
uniform distributions, showing that separating them tdedif we define five partitions, one for every two temperatures
ent partitions with greedy garbage collection results ia tf]: ' :

. D)) . r this trace, this granularity is fine enough to reduce the
same write amplification as in the uniform case. Stoica a é’ 9 y 9

Ailamaki 191 analvze a workload with seversmperatures 'Wew in the cold partitions, so that garbage collection with
(4] Y P ach partition behaves as with a uniform workload. Indeed,

They show that several temperatures can be grouped into ﬁq%he HotCold-5 demo, MinValid stabilizes at 10-11 pages

same partition without increasing the write amplificatias, like in the Greedy-Uniformdemo. This process, described by
long as the skew within each partition does not exceed ainertf’)esnoyers [27], is seen cIearIy.in the demo '

degree. The conclusions of both studies are based on auigoro Visualizing large scale devicesThe design of SSDPlayer

analysis of data movement processes.]
The HotCold FTL implemented in SSDPlayer separaters]ad to address the tradeoff between the level of detail pre

. Sented and the size (measured in number of pages) of the
pages into partitions accorc_jlng to thelr temperature. ssd device that can be clearly visualized. In the initial vensaf
with traces in which each input write request is tagged by DPlayer, users could turn off the display of logical page
temperature tag The user specifies the number of partitions '

. nymbers and per-block counters, which allowed them to view
P, and the highest temperature of pages that belong to e%((%a1\1/ices of up to 20K pages with reasonable clarity. However,

43SDPlayer does not currently implement online temperatiasification, tHIS o_pfciop .had to be SpeCiﬁ?d at startup, _and CODSiS_tedlynam
This functionality can be added by extending the HotCold FTL of minimizing the pages without modifying their displayed

http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/large-hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/

attributes. heterogenous storage hierarchies of RAM and flash, cache
A valuable piece of advice we received when presentimgganization [30], [31], log structured file systems, sl
SSDPIlayer was to handle large devices by “zooming outhagnetic recording [32], and the interaction between file
aggregating the information per block instead of just réuyic systems or databases and their underlying storage. Some of
page size. Thus, instead of blocks being presented adhase extensions are part of our future work. We are evereawar
collection of pages, they can be presented as solid objeadfan ongoing project, inspired by SSDPlayer, of visualizin
whose color represents the aggregate value of one of Haisfiability of clauses and derived conditions duringglon
pages’ attributes. In the current SSDPlayer version, usams executions of SAT solvers [33]. We believe that complicated
pause the simulation, adjust the level of detail presented phenomena can be identified and analyzed in many domains
the screen, and specify the attributes they wish to view.e&omithin computer science and specifically in systems re$earc
of these attributes are common to all FTLs, such as the vaéd visualization becomes a standard research tool.
count or blockage—the number of times it has been erased.
Others are available only for specific FTLs, such as the aeera /|, A RESEARCH USE CASERAID PARITY OVERHEAD
temperature of pages in the HotCold FTL, or average write
level in the Reusable FTL. This addition makes it possible to The increase in SSD capacity, with the shift from SLC to
view devices with over 250K pages, and observe phenoméikC and TLC flash, comes at the cost of reduced reliability.
that could not be easily discerned in smaller devices oiiglartAn increasingly common approach to compensate for the
visualization of large devices. reduced reliability is to organize data in RAID stripesheit
The onlineLarge-HotCold-5demo shows how zooming outwithin an array of SSDs [34]-[36] or within the chips of a
helps analyze a device with 32K pages. The input is a zipfngle SSD [10], [37]. However, the frequent parity updates
workload with the same parameters used in HmCold-5 required in these architectures increase the write amgiifia
demo @=1), where pages from every two temperatures agd device wear. Thus, understanding the data movement
stored in a separate partition. The first zoom level showsocesses caused by these additional updates is crucial for
entire pages, as in the previous demos, illustrating tHereift evaluating the overall contribution of RAID to SSD reliatyil
speeds in which pages of different temperatures are invdli-this section, we describe the basic challenges of RAID in
dated. The second zoom level omits the page numbers &®Ds, and how they are visualized within SSDPlayer. We
block counters from the display, providing a detailed vidvao then describe our insights from visualizing several common
larger portion of the device. In the last two zoom levels,akhi Scenarios.
differ in the size of the blocks presented, pages are omittedRAID in SSDs. In traditional RAID architectures, designed
altogether and blocks are colored according to an aggregltean array of hard drives, interleaved parities help minén
metric. the overheads of reading old parity values and writing the
In this demo, blocks are colored according to the averagpdated values. However, flash based architectures must als
temperature of their pages so that the simulation continuggnsider theparity update overheadthe additional flash
to show how the allocation of blocks to partitions convergewrites caused by parity updates. The parity overhead isetkfin
Figure 5 shows a snapshot of the SSDPlayer display at th’sPJ%D, where P and D are the number of parity and data
zoom level. At the end of the demo, we switch the colgpages written, respectively [10]. The parity update ovathe
scheme to represent block age, in order to show the casedepends on the size of the write requests (larger requests
wear leveling—blocks that are allocated to the hot partitice require less parity updates), and on the amount of parity
erased repeatedly, while blocks storing cold pages ardyrarpages that are copied to new blocks during garbage coliectio
erased, and stay “young”. Commercial RAID architectures that are applied to arrays of
We note that this phenomenon was not as obvious wiiSDs minimize the parity update overhead by only writing
the same distribution on a small device. When the number @ftire stripes to flash [35], [36].
logical pages is small, the “long tail” of the Zipf distribban is RAID can also be employed within a single SSD, where
not long enough—the cold pages are accessed less frequetiéia is striped across separate chips and protected by one
than the hot pages, but frequently enough to generate somnemore parity pages in each stripe. In these architectures,
data movement in the cold partitions. Thus, the uneven wahe RAID functionality is embedded into the FTL, which is
is less pronounced. Uneven wear can still be demonstratedponsible for updating the parity whenever data is writte
with a small device, but doing so requires a more extrengeveral optimizations have been suggested for minimizing
access distribution as input. the parity update overhead in these architectures. Example
The intuitive nature of visualization is a key factor ininclude write buffering of parity pages [38], adapting &
receiving valuable feedback from the community. Our exsize to device age [39], and “elastically” mapping data and
perience is that when researchers are first presented waitrity to stripes of flexible size [10]. The storage and updat
SSDPlayer, ideas on extending or applying it to their owrmareverhead of parity pages motivated these optimizationsai&/e
of interest immediately come to mind. Notable suggestioffisrther interested in how parity updates affect the efficien
we have received include applying our visualization tegbai of the garbage collection process, and how their overhead is
to large pools of RAM [28], content defined storage [29Rffected by it.

http://ssdplayer.cswp.cs.technion.ac.il/demos/large-hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-5/

Chip 0 Chip 1 Chip 2 therg]. Thusl,I th;:z_y arimore Iiklctely to_tbe valid and copi(kewdfggring
garbage collection. As a result, parity pages are resp
a smaller portion of internal writes than data pages, anil the
Fig. 6. Toy example of RAID-5-FTL and a device of three chipd/pdate overhead decreases as the write amplification sesea
and four pages per block. Logical pages 0-5 (gray) were awitt The space occupied by the data and parity of the hottesestrip
in consecutive requests, each generating a parity (tsgloipdate. decreases with each garbage collection invocation. We also
Stripe 0 is highlighted by a red page frame, showing the Bigiages sa6 ot the end of the simulation, that the space occupied by
that belong to it, and both the valid and invalid copies of plagity . . - . .
page. valu_j and |nval|q pan?y pages consists of roughly 25% of the
device’s capacity. This is twice the storage overhead drpec
in a RAID-5 architecture with eight nodes, which is 12.5%.
Visualizing RAID in SSDPlayer. RAID is implemented This demo illustrates a phenomenon similar to the one
within SSDPlayer in three different FTLs, corresponding téhown in theHotCold-1 demo, where the cold pages are
the most commonly used RAID architecturé®AID-1-FTL repeatedly copied during garbage collection, generating e
implements mirroring: chips are divided into pairs and data cessive internal writes. Our extension of the RAID-5 FTL
one chip in the pair is replicated on the othRAID-5-FTL was a natural next step following the identification of the
implements one parity for every stripe. The parity positiSn same process in two different architectures. R#¢D-5+FTL
interleaved, so that different chips store the parity ofedlént minimizes the effect of parity updates on write amplificatio
stripes.RAID-6-FTLimplements two parity pages per stripepy writing data and parity pages in two separate partitions.
When a logical page is written, the RAID FTLs are responsibighis can be viewed as a special case of separating hot and
for updating the parity (or parities) of the stripe this paggold data, where the FTL is aware of the “hotness” of the
belongs to. If a write request includes several pages in tbarity pages. In th&®AID-5-SeparateParitgemo, we run the
same stripe, the parity of this stripe is updated only onc€ame trace on the same device with the RAID-5+ FTL. This
Parity and data pages have different colors, which makesgémo shows that the space occupied by parity pages converges
easy to distinguish between them when they are first writte, 149, which is only slightly higher than the expected 12.5%
and when they are copied during garbage collection. Exi@ a result, the parity update overhead remains alrjpsit
reads of old parity pages are not visualized by SSDPlaygie write amplification is lower (1.75 instead of 1.9).
which is designed to visualize data movement. Similarlg, th The RAID-5+ FTL is not intended to be a full FTL design.
encoding scheme which determines the content of the paritile benefit from separating data and parity pages depends
pages is orthogonal to this analysis and is not implemente@dn the size of requests, the skew in the data itself, and on
The parity update overhead is displayed in a continuoggditional optimizations such as write buffering. Nevetéss,
histogram next to the one showing the write amplificatiomur experience of using it within SSDPlayer, on a variety of
making it easy to compare the two measures. Another ievice sizes and workload distributions, resulted in Valeia
portant feature istripe highlighting when the simulation is insight into the interaction between parity update ovedhea
paused, users may specify a stripe they wish to follow cjosehnd write amplification. This insight was a significant step
Once the simulation is resumed, all the data and parity pageswvard in our research, and is yet another example of how
belonging to this stripe will be highlighted with a coloredsisualization can contribute to our understanding of carpl
page frame. Users may specify whether they want to highlightocesses within storage systems and the interactionebatw
only the valid pages in the stripe, or to include invalid @i them.
of th(_a dz_ata and/pr parity pages as wgll. Several stripes can VII. NOTES FORUSERS ANDDEVELOPERS
be highlighted simultaneously with different frame colors .
Figure 6 shows an example of a highlighted stripe. _ SSDPIa_lyer support.s threg Ie_vels of user involvement. The
Parity update overhead and garbage collection.The first consists of passively viewing the online demos, which
RAID-5-Parity demo shows a device with eight chips and §°Ve' @ range of representative phenomena of data movement

total of 10K pages configured as RAID-5. We run a Zip‘Pn flash devices. The second level is that of thewer

workload in which the size of all write requests is one paghSet Which makes use of basic as well as advanced features

We expect every write to generate a parity update, resultiHH:I”ded in .the SSDPIayer distribution. The third level -E'd.
in a parity update overhead (%f We first note the uneven velopment, in which users add new features or FTLs according

distribution of parity updates due to the high update fregye [© their own use cases.

of pages in the first stripe. This phenomenon was discussedgs.(ljjplayer power LrllserlsThe SSDPIayer downloads pbzfge
in the context of elastic striping [10]. Highlighting thigripe provides access to the latest version as an executable Java

shows that it is not only responsible for a significant pG,Ttioapphcatmn, which is distributed with the traces we used fo

of the updates, but its invalid pages also occupy a sign'lﬁca;?;ﬁnegistgglthe OBHne fjeGm%s, a:gj a sa_rgpledconfliggratfion file.
part of the device’s overprovisioned space. N ayer Users’ Guide [40] provides detailed informa-

As the simulation progresses, the parity update overhet g on the input type and format, configuration parameters,

drops from1 to 1. The reason for this drop is that the datgvailable FTLs, and additional features.
pages are inherently colder than the parity pages that girote >http://ssdplayer.cswp.cs.technion.ac.il/downloads/

http://ssdplayer.cswp.cs.technion.ac.il/demos/raid5-parity/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/raid5-separate-parity/
http://ssdplayer.cswp.cs.technion.ac.il/downloads/

—> Inheritance |SSDManager<Device,Chip,PIane,BIock,PaIge>
—<> Aggregation
—@ Composition
:l Base entity SSDManager<HotColdDevice,...,HotColdPade>

[New entity

| HotCoIdSSDManageIr

Device<Chip>

Device<HotColdChip.

HotCoIdDevicel | HotCoIdChipl

Fig. 7. Partial class diagram, depicting the relationstépreen the generic abstract base entities (no fill) and thdded for the HotCold FTL (solid fill).

The SSDPlayer distribution allows users to explore a widgeedy garbage collection within each partition, which is
range of use cases without writing a single line of code. Bynplemented within theHotColdPlane The methods in this
editing the configuration file, users may configure the platsicclass are responsible for allocating an active block witddnh
layout of their device (i.e., number of pages per block)uadj partition, and for maintaining the separation of data adicwy
its visual settings (i.e., color of hot and cold pages), artd temperature. This is done by ensuring that valid pages fro
provide FTL-specific parameters (i.e., number of partg)on the victim block are moved to an active block in the same

After starting SSDPlayer, users first choose which FTL foartition. There is no specific functionality that had to be
run. They then have the option of specifying an existing I/@nplemented within the chip entity. However, since the base
trace as input, or generating synthetic input with one of trentities are abstract, we had to creatél@ColdChipwhich
existing workload generators. During the simulation, as@m aggregates the appropriate plandstColdDeviceextends the
adjust the zoom level dynamically, specify breakpoints thdevice class by adding several FTL-specific properties for
conditionally pause the simulation, and view and save tleellecting statistics for display.
detailed device state at any point in the simulation. FTLs are implemented amanagers and HotColdSSD-

SSDPlayer developers.The SSDPlayer Programmer'sManager extends the basic manager class. The manager is
Guide [41] provides a detailed description of the core @assresponsible for loading the FTL-specific parameters from th
in SSDPlayer’s code base. This open-source project censisbnfiguration file and creating the device according to those
of approximately 14K lines of code in approximately 20@arameterddotColdSSDManagealso provides a special trace
files. We distinguish between two scales of programmirgarserHotColdTraceParsermwhich extends the basic parser by
tasks. Adding a new FTL or feature requires adding drandling input lines with temperature tags.
modifying several class-files, and is considered a largédesc Extending existing features. In addition to the basic
task. However, extending existing features typically ¢stiss FTL components described above, we opted to extend two
of modifying one or two files, and is considered a small-scaéxisting features as part of thdotCold FTL. We first add
programming task. We demonstrate the different scalesbelblotColdWriteAmplificationGettewhich implements the basic
by outlining our addition of theHotCold FTL. We refer the statistics interface. It computes the write amplificatioithvi
interested reader to the Programmer’s Guide for a comple@ch partition by accumulating page writes and moves at the
documentation of the relevant classes and methods. device level. We defined a histogram where the write ampli-

Extending base entitiesThe HotCold FTL was one of the fication for each partition is plotted in a different colorewW
first FTLs added to SSDPlayer, and thus it directly extends tthen addedHotColdWriteAmplificationGetteio HotColdSSD-
abstract base classes, as depicted in FigurdofColdPage Managerfs list of statistics for display. Next, we extended the
extends page base entity. It includes a temperature pyopditeakpoint base class and defined a new breakpoint type. The
and sets the background color accordingly by overriding th¢otColdWriteAmplificatiorbreakpoint allows users to specify
appropriate methoddotColdBlockextends the block entity, a write amplification valuel¥/, and a partitionp, so that the
and includes aHotColdPartition property which defines the simulation pauses when the write amplificationzirreaches
partition the block belongs to. We had to override the methV .
ods for getting the block status and frame color to display The entireHotCold FTL implementation consists of approx-
according to its partition. imately 900 lines of code, of which 150 handle the additional

Garbage collection in all of SSDPlayer’s current FTLs istatistics and breakpoint types. Clearly, the programraffart
performed within a single plane. The¢otCold FTL employs required to add a new FTL or feature depends on its com-

plexity. However, straightforward additions to SSDPléyerreaders [52]. Most of SSDPlayer’s features can be made
functionality are usually limited to several well definedfga accessible by choosing the page and font sizes, as well as
of its code base. color scheme that best suits each user’s needs.

Many surveys evaluated the effectiveness of visualization
in computer science and mathematical education [53]-[55].

Scientific visualizatiomas been defined as “the transformagraphical representation can help explain the basic cascep
tion of complex, multidimensional data into informativegh- in these fields, which are inherently abstract. Indeed,ethes
ical displays to see the unseen by leveraging what is knowgirveys indicate that visualization makes teaching mojeyen
through visual methods.” [6]. Traditional scientific visiza- aple, improves student motivation, participation, andreay,
tion tools include graphical representations of numeriigah, and provides a basis for classroom discussion and interacti
such as the scatterplot, the histogram, the boxplot, and $high colleagues. At the same time, several obstacles hinder
contour map. Currently, scientific visualization is corsetl a the wide adoption of visualization. These mainly consist of
field within computer graphics. Research in this field adsiss the overheads of identifying effective software, learnireyv
challenges such as efficient use of advanced hardware, Rumaals, searching or generating good examples, and adapting
computer interaction, scalable platforms, abstractiorle® them to the course content [54].
or protocol standardization [4], [42]. Some notable ex&8pl gSpPplayer presents several advantages in this context. It
of current tools include map animation for earth systef gistributed with a set of FTLs that represent the major

research [5], medical visualization applications of augtee approaches in SSD design, which can be easily used with
reality [1], and visualization of three-dimensional nuclacid the built-in workload generator or sample traces. The enlin

structures [43]. To the best of our knowledge, SSDPIlayer igmos provide a set of initial examples for both instructors
the first tool designed for visualizing data movement preess ang students. Finally, it facilitates varying degrees aftitee”
in general, and specifically in SSDs. learning: none at all, when viewing online demos, moderate,

traditional scientific visualization of physical phenomet® ated outcome, or high, when implementing new features.
diverse types of information (e.g., text, video, sound, or

photos) from large heterogenous data sources” [44]. ltdesu
on representation of “non-visual data” by attaching meghin IX. CONCLUSIONS
ful geometric or visual encoding [45]. Michael Friendly [2]
surveys the history of data visualization, drawing a linenfr ~ The ever-increasing complexity of modern storage systems
early geometric diagrams and maps of the 14th century and their management makes it more and more difficult to
large-scale statistical and graphics software engingerirthe analyze underlying processes as well as related new methods
21st century, through notable examples from the 19th cgntugnd optimizations. However, while the scope and functional
Dr John Snow's dot map that helped identify the watepf data visualization techniques advance, storage systen a
borne cause of cholera during its outbreak in London (185%gis continues to rely on traditional basic visualizatiools.
Florence Nightingale’s polar area charts (or ‘rose diagiym Our experience with SSDPlayer demonstrates how visualiza-
which motivated the improvement of sanitary conditions ion can contribute to our understanding of data movement
battlefield treatment (1857), and The Statistical Atlastud t processes on flash. Our experience also indicates tha@simil
Ninth US Census (1874). benefits can be obtained by applying data visualization-prin
Current research in information visualization addreskes tCiples to almost any other storage system component as well
representation of very large data sets, such as networkigra@s to entire systems as a whole.
connections between text documents, and real-time strgami In addition to the obvious benefit for storage system ansalysi
data, focusing on dynamic and interactive visualizatioh) [2and research, our experience revealed additional valuable
[44], [45]. The interactive aspect is considered crucial fdenefit of visualizing storage devices. We were able to imgro
visual data explorationor visual data miningand includes the quality of our teaching of basic and advanced concepts
interactive linking, filtering, zooming, and projection][3 by playing short demos in the classroom, and by defining
SSDPIlayer facilitates the pursuit of insight into data nmoeat extensions to the tool as undergraduate project tasks. $te al
processes via visualization, in a dynamic and interactia@-m improved our presentation of research results that coo§ist
ner, which is the goal of modern-era information visualat complex ideas and FTL designs by demonstrating them within
An important related challenge is to adapt the visual displ&SDPlayer at conferences and meetings with the industry.
of digital content to the needs of users with various types &inally, SSDPlayer was the trigger for valuable discussion
visual impairment. Low vision and color vision deficienciesvith colleagues at these events, where we received feedback
(“color blindness”) make it difficult for users to accessioal and ideas from the community on how to improve the tool
learning material [46], websites [47]-[49] and scientified- and to apply it to additional systems and research domains.
ature [50]. Initiatives such as the Web Accessibility laitite Our experience confirms that the well-established benefits o
(WAI) [51] offer resources and guidelines for developerslata visualization can and should be adopted to storagersyst
while others provide products such as magnifiers and voimesearch and design.

VIll. RELATED WORK

ACKNOWLEDGMENTS [22]

We thank Or Mauda, Dolev Hadar, and Roee Matsa for thei)
contributions to SSDPlayer’s functionality and documéotg

and Fabio Margaglia for generating the trace for theH-

[24]

FTL-MSR demo. We thank Eitan Yaakobi, Assaf Schuster,
Niva Bar-Shimon and Kai Li for their valuable suggestions fo

improving SSDPlayer and its appearance, and the anonym&s

reviewers for their suggestions that helped improve thigepa |,
This work was partially supported by GIF grant no. 1-1356-
407.6/2016.

(1]
(2]
(3]

(4

(5]

(6]

(7]

(8]

Bl

[20]

[11]
[12]
(23]

[14]
[15]
[16]

[17]

(18]

[29]

[20]

[21]

[27]

REFERENCES [28]
R. T. Azuma, “A survey of augmented reality?resence: Teleoperators
and Virtual Environmentsvol. 6, no. 4, pp. 355-385, 1997.

M. Friendly, A Brief History of Data Visualization Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 15-56.

D. A. Keim, “Information visualization and visual dataimng,” IEEE
Transactions on Visualization and Computer Graphiad. 8, no. 1, pp.
1-8, Jan 2002.

R. S. Laramee, H. Carr, M. Chen, H. Hauser, L. Linsen, K.elar,
V. Natarajan, H. Obermaier, R. Peikert, and E. Zhdngure Challenges
and Unsolved Problems in Multi-field VisualizationLondon: Springer
London, 2014, pp. 205-211.

D. DiBiase, A. M. MacEachren, J. B. Krygier, and C. Regvésiima-
tion and the role of map design in scientific visualizatio@&rtography
and Geographic Information Systenwsl. 19, no. 4, pp. 201-214, 1992.
D. A. Griffith, Spatial Autocorrelation and Spatial Filtering: Gaining
Understanding Through Theory and Scientific VisualizatioSpringer
Science & Business Media, 2013.

N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Msse,
and R. Panigrahy, “Design tradeoffs for SSD performanaelJSENIX
Annual Technical Conference (AT.Q008.

S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-aae sector
translation for NAND flash memory-based storage systef@8§3OPS
Oper. Syst. Rewvol. 42, no. 6, pp. 36—42, Oct. 2008.

R. Stoica and A. Ailamaki, “Improving flash write perfoemce by using
update frequency,Proc. VLDB Endow.vol. 6, no. 9, pp. 733-744, Jul.
2013.

J. Kim, J. Lee, J. Choi, D. Lee, and S. H. Noh, “Improvin&G[3
reliability with RAID via elastic striping and anywhere jitgy” in 43rd
Annual IEEE/IFIP International Conference on Dependabjst&ms and
Networks DSN2013.

Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “FlashS#nsimulator
for NAND flash-based solid-state drives,” kst International Confer-
ence on Advances in System Simulation SIV2009.
http://www.openssd-project.org/.

SigNAS-II: Siglead NAND Analyzer Syste@nd ed., Siglead Inc.,
September 2012.
http://www.auslogics.com/en/software/disk-defiaro/.
http://www.raxco.com/home/products/perfectdgsio/.

G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster, “It's miere your [41]
data is, it's how it got there,” irfth USENIX Workshop on Hot Topics

in Storage and File Systems (HotStorage15. [42
P. Desnoyers, “What systems researchers need to knowt &AND
flash,” in 5th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage?013. [43
W. Bux and |I. lliadis, “Performance of greedy garbagdlemion in
flash-based solid-state drive®grform. Eval, vol. 67, no. 11, pp. 1172—
1186, Nov. 2010.

G. Yadgar, E. Yaakobi, and A. Schuster, “Write once, §e% free:
Saving SSD erase costs using WOM codes3th USENIX Conference
on File and Storage Technologies FAD15.

F. Margaglia, G. Yadgar, E. Yaakobi, Y. Li, A. Schusteand
A. Brinkmann, “The devil is in the details: Implementing thapage
reuse with WOM codes,” id4th Usenix Conference on File and Storage[46]
Technologies (FASTRO016.

F. Margaglia and A. Brinkmann, “Improving MLC flash permance
and endurance with extended P/E cycles,|HEE 31st Symposium on
Mass Storage Systems and Technologies (MSSILp.

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]

[39]

[40]

[44]

[45]

[47]

X. Luojie, B. M. Kurkoski, and E. Yaakobi, “WOM codes rece write
amplification in NAND flash memory,” irGLOBECOM 2012.

S. Odeh and Y. Cassuto, “NAND flash architectures reuyigirite am-
plification through multi-write codes,” i80th International Conference
on Massive Storage Systems and Technology (MSBT).

E. Yaakobi, A. Yucovich, G. Maor, and G. Yadgar, “When WOM
codes improve the erasure factor in flash memories?EEE Interna-
tional Symposium on Information Theory ISP015.

“SNIA IOTTA,” http://iotta.snia.org/traces/388, SN, 2014, retrieved:
2014.

D. Narayanan, A. Donnelly, and A. Rowstron, “Write ddiading:
Practical power management for enterprise storadeghs. Storage
vol. 4, no. 3, pp. 10:1-10:23, Nov. 2008.

P. Desnoyers, “Analytic models of SSD write performafcTrans.
Storage vol. 10, no. 2, pp. 8:1-8:25, Mar. 2014.

P. Reinecke, G. Barnett, P. Goldsack, and B. Monaha®\SGGuess,
abstract, and speculate,” Hewlett Packard Labs, TechRepbrt HPE-
2017-05, January 2017.

A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubraia, “Lever-
aging value locality in optimizing NAND flash-based SSDsy’ 9th
USENIX Conference on File and Storage Technologies (FAZIM1.

G. Yadgar, M. Factor, and A. Schuster, “Cooperativeh@ag with return
on investment,” in29th IEEE Symposium on Massive Storage Systems
and Technologies (MSST3013.

G. Yadgar, M. Factor, K. Li, and A. Schuster, “Manageinef Mul-
tilevel, Multiclient Cache Hierarchies with Applicationimis,” ACM
TOCS vol. 29, pp. 5:1-5:51, 2011.

A. Aghayev and P. Desnoyers, “Skylight—a window on sfénl disk
operation,” in13th USENIX Conference on File and Storage Technolo-
gies FAST 2015.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and Sall,
“Chaff: Engineering an efficient SAT solver,” iB8th Annual Design
Automation Conference (DAC2001.

M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. MalKkbifferen-
tial RAID: Rethinking RAID for SSD reliability,"Trans. Storagevol. 6,
no. 2, pp. 4:1-4:22, Jul. 2010.

J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller, C. SaigdhR. Sears,
A. Tamches, N. Vachharajani, and F. Wang, “Purity: Buildifast,
highly-available enterprise flash storage from commodiynponents,”
in ACM SIGMOD International Conference on Management of Data
(SIGMOD) 2015.

“Introduction to the EMC XtremlO storage array (verO}¥. EMC,
White Paper H11752.7, April 2015.

K. Greenan, D. D. E. Long, E. L. Miller, T. Schwarz, and Wildani,
“Building flexible, fault-tolerant flash-based storage teyss,” in 5th
Workshop on Hot Topics in System Dependability (HotD2pp9.

S. Im and D. Shin, “Flash-aware RAID techniques for defsble and
high-performance flash memory SSDEEE Transactions on Comput-
ers vol. 60, no. 1, pp. 80-92, Jan 2011.

S. Lee, B. Lee, K. Koh, and H. Bahn, “A lifespan-awareiaieility
scheme for RAID-based flash storage,”A€M Symposium on Applied
Computing (SAG)2011.

G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster, “SSpéHaisualiza-
tion platform version 1.2.1 users guide,” May 2017.

R. Shor, G. Yadgar, O. Mauda, D. Hadar, and R. Matza, “Blafer
visualization platform programmers guide for version 1,2May 2017.

] C. Johnson, “Top scientific visualization research biems,” IEEE

Computer Graphics and Applicationsol. 24, no. 4, pp. 13-17, July
2004.

] X.Luand W. K. Olson, “3DNA: a software package for theabysis, re-

building and visualization of three-dimensional nucledidastructures,”
Nucleic Acids Researclvol. 31, no. 17, p. 5108, 2003.

J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. RoftA. Schur,
and V. Crow, “Visualizing the non-visual: Spatial analysiad inter-
action with information from text documents,” i EEE Symposium on
Information Visualization (INFOVIS)1995.

C. Chen, “Information visualization,Wiley Interdisciplinary Reviews:
Computational Statisticsvol. 2, no. 4, pp. 387-403, 2010.

K. L. Crow, “Four types of disabilities: Their impact amline learning,”
TechTrendsvol. 52, no. 1, pp. 51-55, 2008.

J. Carter and M. Markel, “Web accessibility for peopléhndisabilities:
an introduction for Web developerdEEE Transactions on Professional
Communicationvol. 44, no. 4, pp. 225-233, Dec 2001.

(48]
[49]
[50]
[51]

[52]
(53]

[54]

[55]

H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda, “Acdultyi
designer: Visualizing usability for the blind, SIGACCESS Access.
Comput, no. 77-78, pp. 177-184, Sep. 2003.

L. Jefferson and R. Harvey, “Accommodating color bliedmputer
users,” in8th International ACM SIGACCESS Conference on Computers
and Accessibility (Assets2006, pp. 40-47.

B. Wong, “Points of view: Color blindnessNature Methodsvol. 8,
no. 6, p. 441, May 2011.

https://iwww.w3.org/WAI/.

http://www.abledata.com/.

N. PresmegHandbook of Research on the Psychology of Mathematics
Education: Past, Present and Future Sense Publishers, 2006, ch.
Research on visualization in learning and teaching mattiesnapp.
205-235.

T. L. Naps, G. RoRling, V. Aimstrum, W. Dann, R. FleischC. Hund-
hausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. A
Velazquez-Iturbide, “Exploring the role of visualizati@and engagement
in computer science education,” Working Group Reports from ITICSE
on Innovation and Technology in Computer Science Educdtio@SE-
WGR) 2002.

T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. RoRlivg, Dann,

A. Korhonen, L. Malmi, J. Rantakokko, R. J. Ross, J. Anderson
R. Fleischer, M. Kuittinen, and M. McNally, “Evaluating tleelucational
impact of visualization,'SIGCSE Bull.vol. 35, no. 4, pp. 124-136, Jun.
2003.

