
When Do WOM Codes Improve the Erasure Factor in
Flash Memories?

Eitan Yaakobi, Alexander Yucovich, Gal Maor, and Gala Yadgar
Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel

{yaakobi,galmaor,gala}@cs.technion.ac.il, yucovich@campus.technion.ac.il

Abstract—Flash memory is a write-once medium in which re-
programming cells requires first erasing the block that contains
them. The lifetime of the flash is a function of the number of
block erasures and can be as small as several thousands. To re-
duce the number of block erasures, pages, which are the smallest
write unit, are rewritten out-of-place in the memory. A Write-once
memory (WOM) code is a coding scheme which enables to write
multiple times to the block before an erasure. However, these
codes come with significant rate loss. For example, the rate for
writing twice (with the same rate) is at most 0.77.

In this paper, we study WOM codes and their tradeoff be-
tween rate loss and reduction in the number of block erasures,
when pages are written uniformly at random. First, we intro-
duce a new measure, called erasure factor, that reflects both the
number of block erasures and the amount of data that can be
written on each block. A key point in our analysis is that this
tradeoff depends upon the specific implementation of WOM codes
in the memory. We consider two systems that use WOM codes;
a conventional scheme that was commonly used, and a new re-
cent design that preserves the overall storage capacity. While the
first system can improve the erasure factor only when the storage
rate is at most 0.6442, we show that the second scheme always
improves this figure of merit.

I. INTRODUCTION

Flash memories are, by far, the most important type of non-
volatile memory (NVM) in use today. Flash devices are em-
ployed widely in mobile, embedded, and mass-storage appli-
cations, and the growth in this sector continues at a stagger-
ing pace. The most conspicuous property of flash-storage tech-
nology is its inherent asymmetry between cell programming
and cell erasing. While it is fast and simple to increase a cell
level, reducing its level requires a long and cumbersome oper-
ation of first erasing the entire block that contains it and only
then programming the cell. Such block erasures are not only
time-consuming, but also degrade the lifetime of the memory,
which can typically tolerate 103 − 105 block erasures. There-
fore, finding algorithms for increasing its lifetime despite this
asymmetric programming behavior has become an important
challenge.

A flash memory chip is built from floating-gate cells. A
group of cells constitute a page, which is the smallest write
unit, and the pages are organized in blocks, which are the
smallest erase unit. Since pages can be updated only if their
accommodating block is first erased, write update requests
are performed out-of-place. Thus, when a page is updated,
its previous location is marked as invalid. In order to accom-
modate this write procedure, the amount of physical storage
has to be larger than the available logical storage. The ratio
between the size of additional storage and logical storage is
called over-provisioning. Furthermore, whenever there are no
available blocks to accommodate page write requests, garbage
collection (GC) is invoked to clean, i.e. erase, blocks for ad-
ditional page writes. However, when a block is chosen to be

cleaned by GC, its valid pages must be read and rewritten to
a clean block, thereby increasing the total number of pages
written to the memory. The write amplification is the ratio be-
tween the number of physical page writes and the number of
logical page writes.

Reducing the write amplification is crucial as it directly af-
fects the memory performance and its lifetime. In general, there
is a direct relation between over-provisioning and write am-
plification. Increasing over-provisioning reduces the write am-
plification [5]. However, high over-provisioning means that a
large area of the memory is not exploited to store information.
Thus, understanding the connection between the two measures
is very important for optimizing the design of flash memories.

Write-once memory (WOM) codes were first introduced in
1982 by Rivest and Shamir [14]. In the binary version, write-
once memory cells can only be irreversibly programmed from
a value of zero to a value of one. The motivation to study
WOM came from storage media like punch cards and optical
disks. A renewed interest in WOM codes came along in the
past years as a result of the tremendous research work on cod-
ing for flash memories. Flash memories impose similar con-
straints in which the level of each cell can only increase, and
can be decreased only if its entire block is first erased. Thus,
a WOM-code can be applied in flash memories to enable ad-
ditional writes without first having to erase the block. WOM
codes in flash memories were investigated both theoretically
with respect to the number of block erasures, and practically
by simulations; see e.g. [1], [8], [11]–[13], [19].

The reduction in the number of block erasures via WOM
codes is beneficial for extending device lifetime. However,
this benefit comes with a significant price of non-negligible
increase in the redundancy, thereby decreasing the over-
provisioning in the memory. Note that when using WOM
codes, it is possible to write more pages with less erasures
since every block can be written more than once. There-
fore, write amplification is not the right figure of merit for
this method. Thus, we introduce a new measure, called era-
sure factor, which is the ratio between the number of block
erasures and number of logical block write requests. When
WOM codes are not used, the erasure factor is equivalent to
the write amplification.

The main goal of this paper is to analyze the erasure factor
when using WOM codes, while pages are written uniformly at
random. In order to have a fair comparison with systems that
do not use WOM codes, we fix the over-provisioning and then
compare the erasure factor. We analyze two different imple-
mentations of WOM codes. Conventional implementations of
WOM codes used the codes in the page level such that each
page is written multiple times, and hence incorporated capacity
loss. We compare these with a new approach, recently proposed
in [18], that avoids the capacity loss by encoding information
into more than a single page after the first write.



The rest of the paper is organized as follows. In Section II,
we introduce the necessary background on flash memories and
WOM codes, and formally define the problem we study in
the paper. In Section III, we review and state the results on
the connection between over-provisioning and the erasure fac-
tor without using WOM codes. In Section IV, we study the
conventional implementation of WOM codes and similarly an-
alyze this connection. We then continue in Section V to study
a more efficient implementation of WOM codes in which no
rate loss is incurred and similarly study its erasure factor.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Flash Memory Structure
Flash memories consist of floating-gate cells that can typi-

cally store a single bit, two bits, or three bits. The cells are or-
ganized into blocks which usually contain 64-384 pages, where
the size of a page ranges between 2KB and 16KB [8]. Due
to the inherent asymmetry between programming and erasing,
flash memories perform page writes out-of-place. This write
procedure introduces the following concepts:
• Flash Translation Layer (FTL): The FTL is responsible

for mapping logical locations to physical ones.
• Over-provisioning (OP): The ratio between the amounts

of additional storage and logical storage. This overhead
is necessary to accommodate out-of-place writes.

• Garbage Collection (GC): The process in charge of clean-
ing blocks in order to free more space for writing.

• Write Amplification (WA): The ratio between the number
of physical page writes and the number of logical page
write requests.

The following summarizes the setup, notations, and assump-
tions we use throughout the paper. These notations hold for a
flash memory device, e.g. a solid state drive.

1) Every block has Z pages, each of size sKB. There are T
physical pages and U logical pages, where both T and U
are a multiple of Z.

2) The over-provisioning is ρ = (T − U)/U and α =
U/T = 1/(ρ+ 1) is the storage rate, which is the ratio
between logical data and physical storage.

3) WA = P/L, where L is the number of write requests
of logical pages and P is the number of resulting physi-
cal page writes. We also define L/Z to be the number of
logical block writes.

B. WOM Codes
WOM codes were first introduced by Rivest and Shamir in

1982 [14], and were found to be very relevant in the context
of rewriting algorithms for flash memories. In this setup, the
memory consists of n cells and the goal is to maximize the
number of bits which can be written to the memory in t writes,
while guaranteeing that each cell is changed only from 0 to 1.
The most famous example of a WOM code is the one given by
Rivest and Shamir for writing two bits twice using only three
cells [14]. In their work, they also analyzed the bounds on the
amount of information that can be stored in a WOM. Since
then, more constructions were given in the 1980’s and 1990’s,
e.g., [4] as well as capacity analysis, e.g., [7], [9]. Several more
constructions of WOM codes were recently given; see e.g. [2],
[15], [17]

Assume t messages are written to the memory, consisting of
n cells. On the i-th write, 1 6 i 6 t, the message size is Mi.
The rate on the i-th write is defined to be Ri =

log2 Mi
n , and

the sum-rate is Rsum = ∑
t
i=1Ri. We consider two types of

WOM codes [17]. In a fixed-rate WOM code, the rate on all
writes is the same, while in a variable-rate WOM code the rate
may vary on each write. The capacity region of a t-write WOM
is the set of all achievable rate tuples. For the binary case, the
capacity region was found in [7], [9], [14]. It was also proved
that the maximum achievable sum-rate for a WOM code with
t writes is log2(t + 1). Similar results were given for fixed-
rate WOM codes [9]. For example the maximum sum-rate of
a two-write fixed-rate WOM code is 1.54.

C. Problem Setup
The main goal of this work is to study the connection be-

tween the over-provisioning ρ (or storage rate α) and the num-
ber of block erasures. This connection depends upon the over-
provisioning value, GC algorithm, and the probability distribu-
tion of the page write requests1. We assume in this work that
requests are uniformly distributed over the U logical pages.
We follow the observation from [10] claiming that greedy GC
is optimal for uniform distribution, where greedy GC always
chooses the block with the minimum number of valid pages
for cleaning. We also assume that greedy garbage collection is
invoked whenever there are no more clean blocks. That is, we
don’t require a minimum fraction of available blocks since the
analysis is very similar to the one without this requirement [5].

WOM codes allow to write the blocks multiple times before
an erasure. Thus, WA is not the right figure of merit since it
is possible to write more pages and yet erase less. Hence, we
introduce a new measure that better characterizes this behavior.
Definition 1. The erasure factor EF in a flash memory sys-
tem is the ratio between the number of block erasures E and the
number of logical block writes L/Z. That is,

EF =
E

L/Z
.

Note that if no rewriting code is used then EF = WA. In the
rest of the paper, we study the erasure factor of several systems
with and without WOM codes, demonstrating how the specific
usage of WOM codes directly affects this figure of merit.

III. THE RELATION BETWEEN OVER-PROVISIONING AND
ERASURE FACTOR

The relation between the write amplification and over-
provisioning has received a significant attention in recent
years due to its importance to the lifetime of flash memories,
see e.g. [5], [10], [16]. Of the numerous works in this area,
we consider two recent studies which we believe give an ac-
curate model of this analysis [5], [16]. The proof given here
is based upon the analysis in these two studies and we give
it in completeness since its understanding is crucial to the re-
sults in the paper. For the purpose of our discussion, we call
the system in these studies, that does not use WOM codes,
the baseline system.
Theorem 2. The number of block erasures E and the erasure
factor EF1(α) of the baseline system are given by

E =
P
L
=

L
Z(1−α′)

, EF1(α) =
1

1−α′
, (1)

where α = α′−1
ln(α′) , or α′ = −α ·W

(
− 1

α e−1/α
)

, and W(x) is
the Lambert W function.

1and also on Z but we assume in the paper that Z is large enough to avoid
this dependency.



Proof: For 0 6 i 6 Z, let N(i) be a random variable
corresponding to the number of blocks with i valid pages, so
∑

Z
i=0 N(i) = T/Z. If we denote by Y the expected number of

valid pages when a block is erased, then for 0 6 i 6 Y − 1,
N(i) = 0, and N(Y) is relatively small enough. We assume
that the system is in steady state and thus the expected value of
N(i) doesn’t change over time2. According to this assumption,
we also get that for Y + 1 6 i 6 Z,

iN(i) = C,

for some constant C, or N(i) = (Y + 1)N(Y + 1)/i. There-
fore, we get3

T/Z =
Z

∑
i=0

N(i) =
Z

∑
i=Y+1

N(i) =
Z

∑
i=Y+1

(Y + 1)N(Y + 1)/i

= (Y + 1)N(Y + 1)
Z

∑
i=Y+1

1
i

≈ (Y + 1)N(Y + 1)(ln(Z)− ln(Y))
= (Y + 1)N(Y + 1) ln(Z/Y).

We also have that

U =
Z

∑
i=0

iN(i) =
Z

∑
i=Y+1

iN(i) = (Z−Y)(Y + 1)N(Y + 1).

Together, we get that

(Y + 1)N(Y + 1) =
T/Z

ln(Z/Y)
=

U
Z−Y

,

or
α =

U
T

=
Z−Y

Z ln(Z/Y)
=

Y/Z− 1
ln(Y/Z)

=
α′ − 1
ln(α′)

.

where α′ = Y/Z, and is given by α′ = −α ·W
(
− 1

α e−1/α
)

.
Now, we deduce that for every Z− Y logical page writes,

Z physical pages are written. Hence, P = L · Z
Z−Y = L

1−α′ ,
and

E =
P
Z

=
L

Z(1−α′)
, EF1(α) =

E
L/Z

=
1

1−α′
.

IV. ANALYSIS OF THE NAIVE-WOM SYSTEM

In this section, we take a first step in analyzing the erasure
factor when using WOM codes. However, as we shall later see,
this analysis depends on the specific implementation of WOM
codes in the memory. In order to have a fair comparison with
the baseline system, we carry out this comparison while fixing
α, the ratio between logical and physical storage. Furthermore,
in order to minimize the modifications in the architecture, we
assume that the block size is fixed, however we will allow
to change the size of the physical pages and accordingly the
number of physical pages in a block.

Let us start by describing the conventional setup to imple-
ment WOM codes in flash. This setup was tested experimen-
tally in several studies, see e.g. [8], [11] along with analytical
derivations in [12]. Assume a two-write fixed-rate WOM code
is used with individual rate R on each write, so R 6 0.77 [9].
Here, WOM codes allow to write each block twice before an
erasure. First, all pages are written sequentially in the block
and after the block is chosen by GC, it is possible to write to

2These properties are taken from [3], [5] where this process is modeled as
a Markov chain and the number of blocks with a given number of valid pages
is fixed for analysis purposes.

3While there are better approximations to the differences between two Har-
monic series, we choose this one since it provides better expressions which
can be analyzed without dependency on the number of pages in a block.

the invalid pages. Thus, every block can be either on a first or
second write. The modifications in the system setup compared
to the baseline system are summarized as follows:

1) A two-write WOM code with fixed-rate R on each write
is used to write all pages. Thus, the size of every physical
page is 1

R sKB so it can accommodate a write of a logical
page which is encoded by the WOM code’s encoder.

2) As a result of increasing the physical page size, the num-
ber of pages in a block reduces to Z′ = RZ, so the block
size remains the same. Accordingly, the total number of
physical pages is also reduced to T′ = RT. Hence, the
ratio β between the number of logical pages and physical
pages is

β =
U
T′

=
U
RT

=
α

R
,

and thus the storage rate is α = βR.
3) We use the same greedy GC as in the baseline system, and

hence the block with the minimum number of valid pages
is chosen by the GC. If the block is on first write, then
it is moved to second write, and since it is not erased, its
valid pages remain in the block. If the block is on second
write, then its valid pages are rewritten on an available
block and the block is erased.

We call this method of implementing WOM codes the naive-
WOM system. Since the value of β is at most 1, we can com-
pare the baseline system and the naive-WOM system only for
α 6 R = 0.77. The next theorem states the result of the era-
sure factor under this setup. The proof is omitted due to the
lack of space and since it is a direct application of Theorem 2.

Theorem 3. For anyα 6 R, under uniform writing with greedy
GC, the erasure factor EF2(α) of the naive-WOM system is
given by

EF2(α) =
1

2(1−β′)

where β′ = −β ·W
(
− 1

β e−1/β
)

, and β = α
R .

Finally, we can compare these two systems and find the val-
ues of α in which the naive-WOM system is superior to the
baseline system with respect to the erasure factor.

Corollary 4. The naive-WOM system for t = 2 with rate R has
better erasure factor than the baseline system if

1 +α ·W
(
− 1
α

e−1/α
)
6 2

(
1 +

α

R
·W

(
−R
α

e−
R
α

))
. (2)

In particular, for R = 0.77, it has better erasure factor for α 6
0.6442.

The extension to multiple writes is immediate. Assume the
individual rate on each write is Rt where the optimal values of
Rt are given in [9]. Then, as before, we have that the erasure
factor EFt(α) is given by

EFt(α) =
1

t
(

1 + α
Rt
·W

(
− Rt

α e−
Rt
α

)) . (3)

In Fig. 1, we plot the curves of EFt(α) α for 2 6 t 6 7, and
the respective optimal Rt values.

V. ANALYSIS OF THE CAPACITY-PRESERVING-WOM
SYSTEM

The main disadvantage of the naive-WOM system is its high
rate penalty and thus an increase in the over-provisioning. In
fact, this is a major caveat which prevented a wide adoption of



0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

α

E
ra

su
re

 F
ac

to
r

 

 

t=1
t=2
t=3
t=4
t=5
t=6
t=7

Fig. 1. A comparison between the erasure factors of the baseline and naive-
WOM systems with multiple writes.

WOM codes in flash memory devices. Furthermore, it also re-
quires to either change the page or block size, which introduces
another level of complication in the architecture design.

These two disadvantages were recently resolved in [18] by
proposing an implementation of WOM codes which requires
neither storage rate loss nor changing the page size. The full
details of this implementation include considerations of per-
formance, parallelism and the complexities of the encoder and
decoder [18]. For the sake of analyzing the erasure factor, we
take a less restrictive approach which does not affect the analy-
sis results. We call this scheme the Capacity-Preserving WOM
system or in short CP-WOM system. We only give the main
ideas of this implementation as the full details appear in [18].
Choice of a WOM code: The capacity region of a two-write
WOM is given by the formula [7], [9]
C2 = {(R1, R2) | ∃p ∈ [0, 0.5], R1 6 h(p), R2 6 1− p},

where h is the binary entropy function. In particular, the rate
tuple (1, 0.5) belongs to this region, and thus we assume that
a two-write WOM code with these rates exists. In practice, we
note that it is hard to find such codes that are successful in
the worst case. Thus, the work in [18] used polar WOM codes
which are capacity achieving and their success is guaranteed
with high probability4. It is also possible to use the recent de-
sign of capacity achieving WOM codes by LDGM codes [6].
Note that since we use WOM codes with rate (1, 0.5) there is
no capacity loss on the first write and thus the storage rate re-
mains the same.
FTL Consideration: From the FTL point of view, every block
can be in one of two states. When it is clean, pages are writ-
ten to it sequentially such that there is no capacity loss (the
rate of the WOM code on this first write is 1). After a block is
chosen by the GC, it is not physically erased. Instead, its valid
pages reside in the block and the invalid pages can be used
to accommodate a second write. Now, every logical page will
be encoded and written into two physical pages in the block
(since the rate of the second write is 0.5). When this block is
chosen again by the GC, its valid pages are copied and rewrit-
ten in order to allow a physical erasure of the block.
Greedy GC Policy: The blocks in this implementation can be in
two different states: first or second write. The greedy GC pol-
icy is characterized by a parameter 0 6 γ1 6 1. Let B1, B2 be
the blocks with the minimum number of valid logical pages
on a first, second write, respectively. If the number of valid
pages in B1 is at most Y1 = γ1 · Z then this block is moved

4Note that it is possible to retry the encoding of polar WOM codes with a
different dither, thereby the failure probability is negligible for any practical
purpose.

from first to second write, and otherwise the block B2 is phys-
ically erased and its valid pages are copied and written to an
available block.

The value of γ1 in the greedy GC which optimizes the num-
ber of erasures and the corresponding erasure factor is found
in the next theorem.

Theorem 5. For any storage ratioα and greedy GC with param-
eter γ1, the erasure factor of the CP-WOM system is given by

EF′2(α,γ1) =
1

3/2−γ1/2−γ2
, (4)

where γ2 satisfies the relation

γ2 = −αW
(
− 1
α

eln
(

1+γ1
2γ1

)
+

γ1−3
2α

)
. (5)

The optimal erasure factor is given by
EF∗2 (α) = min

06γ161

{
EF′2 (α,γ1)

}
. (6)

Proof: Let Y1 = γ1 · Z and let us denote by Y2 the ex-
pected number of valid pages when a block on a second write
is physically erased and let γ2 = Y2/Z. We will determine
the relation between the values of Y1 and Y2. For 0 6 i 6 Z,
we denote by N1(i), N2(i) the number of blocks with i valid
pages on a first, second write, respectively. Notice first that for
i 6 Y1, N1(i) = 0 and for i 6 Y2, N2(i) = 0. Furthermore,
when a block is moved from first to second write, it already
contains Y1 valid pages. Since every logical page is written into
2 available pages, the total number of logical pages this block
can accommodate is at most Y1 + (Z−Y1)/2 = (Z +Y1)/2
and thus N2(i) = 0 for i > (Z + Y1)/2.

We follow the same steps of the proof of Theorem 2 to have
the following equations:

(Y1 + 1)N1(Y1 + 1) = · · · = ZN1(Z)

=(Y2 + 1)N2(Y2 + 1) = · · · = Z + Y1

2
N2(

Z + Y1

2
).

According to these definitions, a block can accommodate Z
page writes on the first write and (Z−Y1)/2 more page writes
on the second write. Furthermore, on every block erasure, Y2
pages are rewritten, so the number of erasures is given by

E =
L + EY2

Z + (Z−Y1)/2
or

E =
L

3Z/2−Y2 −Y1/2
=

L
Z
· 1

3/2−γ1/2−γ2
.

Hence, the erasure factor, as a function of both γ1 and γ2 is
1/(3/2−γ1/2−γ2).

Following the rest of the steps from Theorem 2 we get

T/Z =
Z

∑
i=0

(N1(i) + N2(i)) =
Z

∑
i=Y1+1

N1(i) +

Z+Y1
2

∑
i=Y2+1

N2(i)

=
Z

∑
i=Y1+1

(Y1 + 1)N1(Y1 + 1)
i

+

Z+Y1
2

∑
i=Y2+1

(Y1 + 1)N1(Y1 + 1)
i

= (Y1 + 1)N1(Y1 + 1)

 Z

∑
i=Y1+1

1
i
+

Z+Y1
2

∑
i=Y2+1

1
i


≈ (Y1 + 1)N1(Y1 + 1)

(
ln
(

Z
Y1

)
+ ln

(
Z + Y1

2Y2

))
= (Y1 + 1)N1(Y1 + 1) ln

(
1 +γ1
2γ1γ2

)
.



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

7

8

9

10

α

E
ra

su
re

 F
ac

to
r

 

 

 Baseline System
 Naive−WOM System
 CP−WOM System

Fig. 2. A comparison between the erasure factors of different systems.

As before, we also have

U =
Z

∑
i=0

iN1(i) +
Z

∑
i=0

iN2(i)

=
Z

∑
i=Y1+1

iN1(i) +

Z+Y1
2

∑
i=Y2+1

iN2(i)

= (3Z/2−Y1/2−Y2)(Y1 + 1)N1(Y1 + 1).

Thus we get

(Y1 + 1)N1(Y1 + 1) =
U

3Z/2−Y1/2−Y2
=

T/Z

ln
(

1+γ1
2γ1γ2

) ,

or
α =

3/2−γ1/2−γ2

ln
(

1+γ1
2γ1γ2

) ,

that is
γ2 = −αW

(
− 1
α

eln
(

1+γ1
2γ1

)
+

γ1−3
2α

)
. (7)

Hence, the erasure factor, as a function of α and γ1 is

EF′2(α,γ1) =
1

3/2−γ1/2−γ2
,

where γ2 is given by (7). Lastly, since we can choose the
threshold γ1, the value EF∗2 (α) is achieved by minimizing the
value of EF′2(α,γ1) under the condition in (7).

In Fig. 2, we plot the curves of the erasure factors of the
baseline, naive-WOM, and CP-WOM systems for two writes.
We see that the CP-WOM system always has a better erasure
factor than the baseline system. The naive-WOM system has
better erasure factor than the CP-WOM system roughly for
α 6 0.54. This is not surprising since for small values of α,
no pages are copied by the GC, so the best EF of the CP-WOM
system is 1/1.5 = 2/3 while the best EF of the naive-system
is 1/2. The extension to multiple writes follows similar steps.

Theorem 6. For any storage ratioα and a CP-WOM system for
t writes, the erasure factor is given by

EF∗t (α) = min
06γ1 ,γ2 ,...,γt−161

{
EF′t (α,γ1,γ2, . . . ,γt−1)

}
, (8)

where
EF′t (α,γ1,γ2, . . . ,γt−1) =

1

2− 1
2t−1 −

∑
t−1
j=1 γ j

2 −γt

, (9)

and γt satisfies

α =
2− 1

2t−1 −
∑

t−1
j=1 γ j

2 −γt

∑
t
j=1 ln

(
1+2 j−2γ j−1

2 j−1γ j

) , (10)

while γ0 = 0.

VI. CONCLUSION

The primary goal of this paper is to establish the founda-
tions in analyzing the erasure factor (as an alternative measure
to the unsuitable WA) when using WOM codes. This analysis
is very important since it answers the fundamental questions
regarding the potential benefit of using WOM codes in flash
memories and similar memories. We hope that similar studies
will be conducted in order to analyze the performance of other
coding schemes with respect to the erasure factor. Some future
research directions are summarized below.

1) A tighter approximation of the erasure factor when blocks
have a relatively small number of pages.

2) Analysis of other systems implementing WOM codes and
additional coding schemes.

3) Analysis of non-binary WOM codes.
4) Analysis of workloads other than the uniform writing; see

for example [5], [16].
ACKNOWLEDGMENT

This was supported in part by the Israel Science Foundation
(ISF) Grant No. 1624/14.

REFERENCES

[1] A. Berman and Y. Birk, “Retired-page utilization in write-once memory –
A coding perspective,” Proc. IEEE Int. Symp. on Inform. Theory, pp. 1062–
1066, Istanbul, Turkey, Jul. 2013.

[2] D. Burshtein and O. Strugatski, “Polar write once memory codes,” IEEE
Trans. Inform. Theory, vol. 59, no. 8, pp. 5088–5101, Aug. 2013.

[3] W. Bux and I. Iliadis, “Performance of greedy garbage collection in flash-
based solid-state drives,” Performance Evaluation, vol. 67, no. 11, pp.
1172–1186, 2010.

[4] G.D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. Inform. Theory, vol. 32, no. 5, pp. 697–700,
Oct. 1986.

[5] P. Desnoyers, “Analytic models of SSD write performance,” ACM Trans.
Storage, vol. 10, no. 2, pp. 8:1–8:25, Mar. 2014.

[6] E. En Gad, W. Huang, Y. Li, and J. Bruck, “Rewriting flash memories by
message passing,” to appear Proc. IEEE Int. Symp. on Inform. Theory,
Hong Kong, Jun. 2013.

[7] F. Fu and A.J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 308–313, Sep. 1999.

[8] L.M. Grupp, et al., “Characterizing flash memory: anomalies, observations,
and applications,” Proc. 42nd Annual IEEE/ACM Int. Symp. on Microar-
chitecture (MICRO), pp. 24–3, New York, NY, Dec. 2009.

[9] C. Heegard, “On the capacity of permanent memory,” IIEEE Trans. In-
form. Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[10] X.-Y. Hu and R. Haas, “The fundamental limit of flash random write per-
formance: Understanding, analysis and performance modelling,” IBM Res.
rep. RZ 3771, IBM Research - Zurich, 2010.

[11] A.N. Jacobvitz, R. Calderbank, and D.J. Sorin, “Coset Coding to Extend
the Lifetime of Memory,” IEEE 19th Int. Symp. on High Performance
Computer Architecture (HPCA), pp. 222–233, Shenzhen, China, Feb. 2013.

[12] X. Luojie, B.M. Kurkoski, and E. Yaakobi, “WOM codes reduce write
amplification in NAND Flash memory,” IEEE Global Comm. Conf.
(GLOBECOM), pp.3249–3254, Anaheim, CA, Dec. 2012.

[13] S. Odeh and Y. Cassuto, “NAND flash architectures reducing write am-
plification through multi-write codes,” Proc. IEEE 30th Symp. on Mass
Storage Systems and Tech. (MSST), pp. 1–10, Santa Clara, CA, Jun. 2014.

[14] R.L. Rivest and A. Shamir, “How to reuse a write-once memory,” Inform.
and Contr., vol. 55, no. 1–3, pp. 1–19, December 1982.

[15] A. Shpilka, “Capacity achieving multiwrite WOM codes,” IEEE Trans.
Inform. Theory, vol. 60, no. 3, pp. 1481–1487, March 2014.

[16] R. Stoica and A. Ailamaki, “Improving flash write performance by using
update frequency,” Proc. of the VLDB Endowment, vol. 6, no. 9, pp. 733–
744, 2013.

[17] E. Yaakobi, S. Kayser, P.H. Siegel, A. Vardy, and J.K. Wolf, “Codes for
write-once memories,” IEEE Trans. on Inform. Theory, vol. 58, no. 9,
pp. 5985–5999, Sep. 2012.

[18] G. Yadgar, E. Yaakobi, and A. Schuster, “Write once, get 50% free: sav-
ing SSD erase costs using WOM codes,” Usenix FAST, Santa Clara, CA,
Feb. 2015.

[19] X. Zhang, L. Jang, Y. Zhang, C. Zhang, and J. Yang, “WoM-SET: Low
power proactive-SET-based PCM write using WoM code,” IEEE Int. Symp.
on Low Power Electronics and Design (ISLPED), pp. 217–222, Sep. 2013.


