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Abstract
Modern flash devices, which perform updates ‘out of

place’, require different optimization strategies than hard
disks. The focus for flash devices is on optimizingdata
movement, rather than optimizing data placement. An un-
derstanding of the processes that cause data movement
within a flash drive is crucial for analyzing and manag-
ing it.

While sequentiality on hard drives is easy to visualize,
as is done by various defragmentation tools, data move-
ment on flash is inherently dynamic. With the lack of suit-
able visualization tools, researchers and developers must
rely on aggregated statistics and histograms from which
the actual movement is derived. The complexity of this
task increases with the complexity of state-of-the-art FTL
production and research optimizations.

Adding visualizationto existing research and analysis
tools will greatly improve our understanding of modern,
complex flash-based systems. We developed SSDPlayer,
a graphical tool for visualizing the various processes that
cause data movement on SSDs. We use SSDPlayer to
demonstrate how visualization can help us shed light on
the complex phenomena that cause data movement and
expose new opportunities for optimization.

1 Introduction
Data on flash devices moves to a different location when-
ever it is updated: the data is written again on a clean
page, and the previous data location is marked as invalid.
Theflash translation layer (FTL)is responsible for map-
ping logical addresses to physical pages. Thegarbage col-
lectionprocess maintains a pool of clean blocks by occa-
sionally erasing a block with invalid pages after copying
its valid pages to another available block. These inter-
nal writes, referred to aswrite amplification, are another
cause for data movement throughout the device. The write
amplification is usually estimated using a formula derived
from an analysis of greedy garbage collection [7].

Many FTL optimizations incur additional internal data
movement. Examples include wear leveling [5], merg-
ing of log blocks [14], partition resizing [19], and parity
updates [12]. Quantifying the write amplification is im-
portant for analyzing the effect of such optimizations on
the performance and durability of the flash device. How-
ever, doing so is not always trivial and requires a deep

understanding of the interacting causes of data movement
within each device.

Currently available simulators [5, 13] output internal
state and statistics in the form of lists, tables and his-
tograms, from which deriving internal processes is cum-
bersome and requires a great deal of skill and imagination.
Basic hardware evaluation boards [1] provide similar out-
put, while advanced ones provide graph output of block
level reliability tests [18]. SSD optimization tools pro-
vide fragmentation information [2], S.M.A.R.T statistics
and block update frequency [3]. However, complicated
flash processes cannot be understood from these aggre-
gated statistics. Furthermore, these tools are intended for
off-the-shelf SSDs, and cannot be used for research pro-
totypes.

The increasing complexity of state-of-the-art flash man-
agement justifies the adoption of new research and anal-
ysis techniques. Just as graphs illustrate phenomena that
are hard to identify in tables, and just as one picture is said
to be worth a thousand words, we claim thatone video is
worth a thousand histograms. To establish this claim, we
developedSSDPlayer, an open source graphical tool for
visualizing data layout and movement on flash devices.
This tool will give us a better understanding of how our
data gets from one place to another and why.

In the rest of this paper, we first introduce the basic fea-
tures and structure of SSDPlayer. We then take a close
look at several common data movement processes that
were analyzed with standard mathematical methods. We
use SSDPlayer to show how the analyzed phenomena can
be easily identified by visualizing each of these processes
and explain how visualization can shed light on similar
processes in more complex systems. We will refer the
reader to a few one-minute online videos generated with
SSDPlayer for demonstration purposes1.

2 SSDPlayer
SSDPlayer is an open source project. Thanks to its flexi-
ble structure, a wide range of functionalities can be added
to it in a straightforward manner. These include many re-
cently suggested FTL optimizations, including wear lev-
eling, page mapping, and garbage collection algorithms.
Users can easily modify the graphical parameters to visu-
alize the concepts they are interested in and display the

1http://www.cs.technion.ac.il/ ˜ gala/SSDPlayer/
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Figure 1:SSDPlayer display (simplified)

details and statistics required for their analysis. We de-
scribe several such scenarios in the following sections.

SSDPlayer is implemented in Java and is designed to
provide the most general SSD functionality, in order to al-
low easy extensions and additions for a wide range of ca-
pabilities. The basic flash components – e.g., page, block,
page mapping and garbage collection – are implemented
as abstract classes that can be extended according to the
desired FTL functionality. The simulation and visualiza-
tion components are similarly flexible: the trace parser
can be extended to process different trace formats. Al-
ternatively, synthetic access distributions can be added by
extending the workload generator. The basic histograms
can be extended to display additional aggregated statistics.

Our goal of keeping SSDPlayer as simple and easily
extendible as possible led to several design choices. Most
of the complexity of full scale simulators is due to accu-
rate performance modeling that takes into account numer-
ous device specific parameters. Thus, we implemented
SSDPlayer from scratch, focusing only on the way data
moves, regardless of how much time it takes. However,
it can be extended to provide performance analysis by
adding delays during time consuming operations such as
erasures and copies, or by collecting the relevant statistics
and presenting them as a histogram or a final output file.

SSDPlayer supports two modes of operation. Insim-
ulation mode, it simulates the chosen FTL on a raw I/O
trace or on a synthetic workload, illustrating the SSD state
at each step. This illustration is continuous, thus forming
a “video” of the data movements that take place during
execution. This mode is useful for testing and analyzing
various features without, or before, implementing them in
a full scale simulator or hardware platform.

In visualizationmode, SSDPlayer illustrates operations
that were performed on an upstream simulator or device.
The input in this mode is an output trace generated by a
simulator, hardware evaluation platform, or a host level
FTL, describing the basic operations that were performed
on the flash device — writing a logical page to a physical
location, changing block state, etc. This mode is useful
for illustrating processes that occur in complex research
and production systems, without porting their entire set of
features into SSDPlayer.

The SSDPlayer display, depicted in Figure 1, is orga-

nized into chips, planes, blocks and pages, as specified
by the user at startup. Colors and textures are used to
represent page and block properties, such as data ‘tem-
perature’ or valid page count. A page’s properties and
state determine its fill color, texture, and frame color. A
block’s properties determine its background and frame
colors. Note that the page and block properties need not
necessarily match. Aggregated information such as write
amplification is displayed in continuously updated his-
tograms, illustrating how the device’s state changes over
time.

There is a tradeoff between the complexity and amount
of details displayed, and how easily the visualized pro-
cesses can be identified and interpreted. Thus, while there
is no restriction on the complexity of the FTL schemes
implemented within SSDPlayer, users should carefully
choose which page and block attributes to display. For
simplicity, we use a ‘toy’ device (2K pages) in our demon-
strations. However, we used SSDPlayer to visualize de-
vices with up to 25K pages on an HDTV screen by omit-
ting fill texture and page numbers. Larger devices can be
analyzed by visualizing a subset of the device’s planes or
chips, which is sufficient for a wide range of purposes.

3 Greedy Garbage Collection

The most commonly used formula for estimating the write
amplification with greedy garbage collection as a function
of page size and overprovisioning is that of Bux and Il-
iadis [7]. They derive the formula from a detailed analysis
of the number of blocks with eachvalid count—number
of valid pages. Their analysis shows that with a random
uniform workload, the minimum value (MinValid) con-
verges to a single value or to two consecutive values. To
date, we are not aware of a similar derivation for purely
non-uniform distributions such as Zipf.

We use SSDPlayer to illustrate data movement in the
uniform case, where it is well-understood. We then show
how a visual illustration can shed some light on the non-
uniform case, where data movement is complex and not
fully understood.

The Greedy FTL in SSDPlayer implements greedy
garbage collection within each plane, and a page alloca-
tion scheme that balances the number of valid pages be-
tween planes. All pages have the same color, but the page
fill changes to a checkered pattern if it has been copied to
a new block during garbage collection. Invalid pages are
crossed out, but maintain their fill color and pattern until
they are erased.

In theGreedy-Uniformdemo, the basic manager is ex-
ecuted with a small SSD and a uniform random workload.
This video shows that shortly after the SSD’s logical ca-
pacity is filled and garbage collection begins,MinValid
stabilizes at 10-11 pages. The portion of each block that
is taken up by valid pages transferred at garbage collection



is clearly visible thanks to their different pattern.
We use the same SSD and FTL with a Zipf workload.

The Greedy-Zipf demo shows thatMinValid converges
much slower and at a higher value of 15-16 pages. The
reason is that cold pages that are rarely updated remain
valid during consecutive garbage collection invocations.
As a result, write amplification increases, leaving less
space available in the erased blocks for invalid copies of
hot pages, thus causing even more frequent garbage col-
lection, and so on. This phenomenon is graphically visi-
ble as a dense grouping ofinvalid (X) marks on the plainly
filled pages that represent user writes.

4 Hot/Cold Data Separation

Separating hot and cold data has been shown to reduce
write amplification and, respectively, garbage collection
costs and cell wear [8, 19]. Desnoyers [8] analyzes cases
in which the hot and cold portions of the workloads are
each accessed with different uniform distributions, show-
ing that separating them to different partitions with greedy
garbage collection results in the same write amplification
as in the uniform case. Stoica and Ailamaki [19] analyze a
workload with severaltemperatures. They show that sev-
eral temperatures can be grouped into the same partition
without increasing the write amplification, as long as the
skew within each partition does not exceed a certain de-
gree. The conclusions of both studies are based on a rigor-
ous analysis of data movement processes. In this section,
we use SSDPlayer to show how a graphical visualization
can greatly clarify these processes and is certain to assist
in analyzing more complicated scenarios.

The HotCold FTL separates pages into partitions ac-
cording to their temperature. It is used with traces in
which each input write request is tagged by a temperature
tag. The user specifies the number of partitions,P, and the
highest temperature of pages that belong to each partition.
Each plane hasP active blocks, on which pages of each
partition are written. When an active block is full, a new
clean block is allocated for this partition. Greedy garbage
collection is used, determining partition sizes implicitly
according to the number of writes with each temperature.

As a reference point, we first run theHotCold FTL
with one partition and a Zipf workload where requests
are tagged with ten different temperatures. TheHotCold-
1 demo is essentially a replay of the demonstration in
Greedy-Zipf. It shows how a simple addition of colors can
facilitate our understanding of the process described in
Section 3: before garbage collection starts, the red pages,
which belong to the top five temperatures (and only 2% of
the data), occupy roughly half of each block, representing
their portion of accesses in the trace. As the garbage col-
lection process advances, blue (cold) checkered (copied)
pages occupy increasing portions of each block, most of
them remaining valid until the next garbage collection on
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Figure 2: Close-up of one block during theHotCold-1demo
with Zipf workload, tagged with 10 temperature ranges, where
red (1) is the hottest and blue (10) is the coldest. The valid count
is shown at the time when the block is chosen for the next era-
sure, where it is equal toMinValid. The MinValid pages that
were copied to a clean block during previous garbage collections
are filled with a checkered pattern. This demo shows their por-
tion increasing until it stabilizes at roughly half the block size.

this block. Figure 2 shows snapshots of the first block in
the device during this demo.

When we separate the data into two or three partitions,
we observe a process similar to that inHotCold-1, because
within each partition, pages are still accessed with a rel-
atively high skew. However, this behavior changes when
we define five partitions, one for every two temperatures.
For this trace, this granularity is fine enough to reduce
the skew in the cold partitions, so that garbage collection
within each partition behaves as with a uniform workload.
Indeed, in theHotCold-5demo,MinValid stabilizes at 10-
11 pages like inGreedy-Uniform. This process, described
by Desnoyers [8], is seen clearly in the demo. We be-
lieve much more complicated phenomena can be identi-
fied and analyzed as visualization becomes a standard re-
search tool.

5 Reusable SSD
The recentReusable SSD[23] reuses flash pages for addi-
tional (second) writes before they are erased. To perform
a second write, the logical page written by the user is en-
coded with a special encoder that adds redundancy bits,
producing an output that is twice the page size and can
be written on a pair of physical pages that have already
been programmed. The encoder guarantees that writing
the new data will only require increasing the cell voltage
level, thus complying with standard flash programming
constraints.

The commonly used formula for write amplification
cannot be used when additional writes are performed be-
fore the block is erased. The derivation in [7] does not
extend trivially to this case, because the number of addi-
tional writes that can be performed depends on the way in-
valid pages or entire blocks are reused. In fact, since some
redundancy must always be added to the logical data to



enable second writes, the conventional definition of write
amplification does not accurately represent flash utiliza-
tion in this context. Several models, with varying degrees
of complexity, were suggested for analyzing the proper-
ties of second writes in various designs [15, 16, 20]. We
use SSDPlayer to show how a graphical illustration can
provide important insights for such complex designs.

The Reusable FTL implements second writes in
SSDPlayer. Each block is first written normally by first
writes. When it is chosen by the garbage collector it is
either erased orrecycled— allocated for second writes
without erasure2. Upon receiving a write command, if a
recycled block is available, a second write is performed
on a pair of physical pages in the recycled block whose
data has been invalidated.

Pages are colored according to the write level of their
logical page. When a page is copied to a new block be-
fore erasure (such copies are always performed as first
writes), it maintains the color of itsoriginal write level,
but changes its texture to that of an internal write. Thus,
the different colors represent the portion of the data writ-
ten in first and second writes within both user and internal
writes. In addition, we replaced the write amplification
histogram with one showinglogical writes per erasure.
With N pages per block and first writes only,N logical
writes per erasure are equivalent to a write amplification
of 1. With second writes,N×1.5 logical writes per era-
sure are the maximum value achievable when all pages
are fully utilized for two writes, with no internal writes.

In the Reusabledemo, we run the Reusable FTL on a
small SSD withN=32 and a Zipf workload. It shows that
most of the pages are utilized for two writes, but that many
of the logical pages written as second writes (blue) are
still valid when the block is erased and must be copied to
a clean block (checkered). This means that pages written
without prior erasure of the block end up occupying newly
erased blocks when they are copied, reducing the benefit
from second writes. Indeed, only 26 logical writes (out of
N×1.5=48 possible) are performed per erasure. Although
this is more than the 17 writes per erasure achieved with
first writes only3, flash utilization can clearly improve.
This understanding motivated the use of second writes in
Reusable SSD for hot pages only.

TheHotColdReusableFTL uses second writes only for
hot data, which it identifies by the temperature tag in the
trace. We run this FTL in theHotCold-Reusabledemo,
with the Zipf workload from the HotCold demos, where
requests are tagged with ten different temperatures. Sec-
ond writes are used for the top 5 temperatures. The demo
shows that pages written in second writes are almost al-
ways invalid by the time their block is erased. As a re-

2The detailed conditions for block recycling are specified bythe
Reusable SSD design [23].

3This value is derived fromMinValid=15 in the Greedy-Zipf demo.

sult, the logical writes per erasure increase to 32, rep-
resenting a significant benefit from second writes. As a
reference, recall that the best partitioning of this trace ac-
cording to temperature (in the HotCold-5 demo) resulted
in MinValid=10, corresponding to 22 writes per erasure.
The two versions of Reusable SSD demonstrate the power
of visualization as a research tool for new techniques and
system designs. The insights gained from these visual ex-
periments were valuable for formalizing the utilization of
flash with and without second writes, and for designing an
optimal garbage collection scheme [20].

The full Reusable SSD design is much more complex.
It performs second writes in parallel to blocks in different
planes, identifies cold data without external tagging, and
handles encoding failures and mapping constraints [23].
The implications of Reusable SSD for device lifetime and
performance have been thoroughly evaluated by a detailed
implementation in DiskSim [5]. We take advantage of
this implementation to illustrate the full Reusable SSD
design in SSDPlayer. We added a logging mechanism to
the implementation in DiskSim, which logs all physical
write commands, garbage collection procedures, and state
changes to a trace file. In the onlineParallelReusable-∗
demos we use this trace file as input to SSDPlayer in vi-
sualization mode to visualize the complex data movement
in the full Reusable SSD design with Zipf and real work-
loads.

6 Other Data Movement Processes

We discuss here several popular flash optimization do-
mains that we plan to make available in future versions
of SSDPlayer. Data movement plays a major role in all of
them, occurring within complex interacting processes. We
describe how visualizing these processes will help to un-
derstand them and to optimize the systems in which they
occur.

RAID. The effect of various redundancy schemes such
as RAID5 and erasure coding on SSD performance and
wear is a hot research topic [6, 9, 12]. The performance of
these schemes is greatly affected by the data movements
they incur, which are complicated to the point where visu-
alization is crucial for understanding them. Parity updates
are a major contributor to write amplification and accel-
erated wear, especially in update schemes that were orig-
inally designed for hard drives [6]. The location of parity
blocks as well as the availability of previous, invalid data
and parity blocks, greatly affect the durability of the sys-
tem and its recovery costs. We are currently extending
SSDPlayer to include notions of parity and stripes, so that
the distribution of parity and data throughout the device
will be easily visible and stripes can be discerned.

Caching. SSDs that are used as a caching tier em-
ploy an additional management layer, further increasing
the complexity of data movement processes. Data may



move as a result of varying the overprovisioned space or
read and write cache sizes [17], or the movement of pages
within the garbage collection process may depend on dy-
namic properties such as the logical queue they belong to
or their dirty status [21, 22]. The complex interactions be-
tween these processes, easily illustrated within a tool like
SSDPlayer, will be much better understood through visu-
alization.

Wear. Many FTL optimizations that target wear lev-
eling incur additional data movements, such as migration
of cold data into old blocks. At the page level, various
optimizations distinguish between the LSB or MSB pages
in MLC flash for garbage collection, page allocation and
mapping, thus modifying the way data is moved within
existing processes [11]. Many such optimizations are trig-
gered by the observed page or block bit error rates, which
are in essence dynamic properties. A graphical illustration
can help point out unexpected interactions between these
highly correlated processes.

Content. Although all of the examples in this work re-
ferred to the page metadata or physical properties, visual-
ization can also help analyze content based optimizations,
such as compression or deduplication [10]. For example,
colors and patterns can represent the compression ratio or
number of duplicates of a page, to show how these affect
or incur data movement on flash. Snapshots, versions and
clones can be represented in a similar manner, to visual-
ize the interaction between file systems or databases and
their underlying storage. Such interactions are complex
by nature, and we expect that visualizing them will lead
to valuable insights and analyses.

7 Conclusions

The ever-increasing complexity of flash based systems
and their management makes it increasingly difficult to
analyze related new methods and optimizations. We
showed that a graphical illustration of data movement pro-
cesses on flash can facilitate a much deeper understanding
of their causes and effects. It can also expose unexplored
phenomena and opportunities for optimization. We thus
believe that visualization should be a standard mechanism
in the tool box of every flash oriented research or develop-
ment team. Furthermore, visualization can provide simi-
lar benefits in the analysis and optimization of any logical
layout that incurs extensive data movement, such as shin-
gled magnetic recording [4], log structured file systems,
etc.

We supported our claims with SSDPlayer: a flexible,
extendible tool for visualizing the various processes that
cause data movement on SSDs. We continue to work on
additional features and optimizations that will expand the
scope of the player and improve user experience. The
code and executable files of SSDPlayer are available on-

line4. We encourage researchers and developers to use
this tool for their analysis and to contribute to the online
repository.
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