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Abstract understanding of the interacting causes of data movement

Modern flash devices, which perform updates ‘out B\f'th'n each deV|_ce. ) )
place’, require different optimization strategies thancha Currently available simulators [5, 13] output internal
disks. The focus for flash devices is on optimizieta state and statistics in the form of lists, tables and his-
movementrather than optimizing data placement. An u ograms, from which deriving internal processes is cum-

derstanding of the processes that cause data moverR&hgOMe and requires agreat deal ofskillgndimagination.
within a flash drive is crucial for analyzing and mana 3asic hardware evaluation boards [1] provide similar out-
ing it ut, while advanced ones provide graph output of block

While sequentiality on hard drives is easy to visualizhefVeI reliability tests [18]. SSD optimization tools pro-

as is done by various defragmentation tools, data mO\Yéqe fragmentation information [2], S.M.A.R.T statistics
and block update frequency [3]. However, complicated

ment on flash is inherently dynamic. With the lack of sui
h processes cannot be understood from these aggre-

able visualization tools, researchers and developers q e h h | : dod f
rely on aggregated statistics and histograms from whi@fted statistics. Furthermore, these tools are intended fo
-the-shelf SSDs, and cannot be used for research pro-

the actual movement is derived. The complexity of th

task increases with the complexity of state-of-the-art F'ItEtyEeS' ) lexity of tth flash
production and research optimizations. The increasing complexity of state-of-the-art flash man-

Adding visualizationto existing research and analysigg_emem Jgstn‘les the adoption Of_ new research and anal-
tools will greatly improve our understanding of moderySiS techniques. Just as graphs illustrate phenomena that

complex flash-based systems. We developed SSDPIa:?Ez ’hard to identify in tables, and just asone pict_ure i§ said
a graphical tool for visualizing the various processes tHat°< worth a thous_and words, we Cla.'m tbz_a'e vu_jeo IS
cause data movement on SSDs. We use SSDPIaerV%th a thousand histogram3o establish this claim, we

demonstrate how visualization can help us shed light gﬁvelqpedSSDPlayeran open source graphical tool for
the complex phenomena that cause data movement gﬁaahzmg data layout and movement on flash devices.
Is tool will give us a better understanding of how our

o L T
expose new opportunities for optimization.
P PP P data gets from one place to another and why.

1 Introduction In the rest of this paper, we first introduce the basic fea-

Data on flash devices moves to a different location WhetH-res and structure of SSDPlayer. \We then take a close

ever it is updated: the data is written again on a cleg??k at several common data moveme_nt processes that
Ygre analyzed with standard mathematical methods. We

page, and the previous data location is marked as invalit. SSDP| how h h ivzed ph
Theflash translation layer (FTL)s responsible for map- use SoUF aye_r_to Show OW.t. € analyzed phenomena can
be easily identified by visualizing each of these processes

ping logical addresses to physical pages. Gaage col- ) : o X e
lection process maintains a pool of clean blocks by occ@nNd explain how visualization can shed light on similar

sionally erasing a block with invalid pages after Copyirgo;esses '? more complex s;l{stemz. we will ref((ajr th‘;
its valid pages to another available block. These intéfader to a few one-minute online videos generated wit

nal writes, referred to aarite amplification are another SSDPIayer for demonstration purposes
cause for data movement throughout the device. The wite SSDPI ayer

amplification is usually estimated using a formula deriveéjSDPlayer is an open source project. Thanks to its flexi-

ble structure, a wide range of functionalities can be added
foitina straightforward manner. These include many re-

movement. Examples include wear leveling [5], merg- L : .

. " . - tently suggested FTL optimizations, including wear lev-
ing of log blocks [14].’ partltlon resizing [1.9.]’ apd Par'tyelingypagg mapping ar?d garbage coIIectiongaIgorithms.
updates [12]. ngnufylng the write ampl|f|.calt|onl 'S Miysers can easily modify the graphical parameters to visu-
portant for analyzing the effect of such optimizations oa ize the concepts they are interested in and display the
the performance and durability of the flash device. How-

ever, doing so is not always trivial and requires a deep?http://www.cs.technion.ac.il/ ~gala/SSDPlayer/



http://www.cs.technion.ac.il/~gala/SSDPlayer/

chip nized into chips, planes, blocks and pages, as specified
plane 0o by the user at startup. Colors and textures are used to
: represent page and block properties, such as data ‘tem-
.. page | perature’ or valid page count. A page’s properties and
(Fie Y[oa v DI — state determine_ its fill colqr, texture, and frame color. A
timeline block’s properties determine its background and frame
Valid Histogram ~Write Amplification colors. Note that the page and block properties need not
I necessarily match. Aggregated information such as write
_“"" amplification is displayed in continuously updated his-
Figure 1:SSDPIlayer display (simplified) tograms, illustrating how the device’s state changes over

details and statistics required for their analysis. We déne.
scribe several such scenarios in the following sections.  There is a tradeoff between the complexity and amount

SSDPIlayer is implemented in Java and is designed%detans displayed, and how easily the visualized pro-
provide the most general SSD functionality, in order to #f€SSes can b_e identified and inte_rpreted. Thus, while there
low easy extensions and additions for a wide range of d-n0 restriction on the complexity of the FTL schemes
pabilities. The basic flash components — e.g., page, bb@plemented within SSDPlayer, users should carefully
page mapping and garbage collection — are implemenfé@()?e_ which page and blqck attributes to display. For
as abstract classes that can be extended according toStwlicity, we use a ‘toy’ device (2K pages) in our demon-
desired FTL functionality. The simulation and visualizsstrations. However, we used SSDPlayer to visualize de-
tion components are similarly flexible: the trace pars¥ices with up to 25K pages on an HDTV screen by omit-
can be extended to process different trace formats. AR fill texture and page numbers. Larger devices can be
ternatively, synthetic access distributions can be adged®alyzed by visualizing a subset of the device’s planes or
extending the workload generator. The basic histograftiPs, which is sufficient for a wide range of purposes.
can be extended to display additional aggregated statisti .

Our goal of keeping SSDPlayer as simple and eas;?y Greedy Garbage Collection
extendible as possible led to several design choices. Mbbe most commonly used formula for estimating the write
of the complexity of full scale simulators is due to accwamplification with greedy garbage collection as a function
rate performance modeling that takes into account numefpage size and overprovisioning is that of Bux and -
ous device specific parameters. Thus, we implementeadis [7]. They derive the formula from a detailed analysis
SSDPlayer from scratch, focusing only on the way datd the number of blocks with eackalid count—number
moves, regardless of how much time it takes. Howevef,valid pages. Their analysis shows that with a random
it can be extended to provide performance analysis bgiform workload, the minimum valueMinValid) con-
adding delays during time consuming operations suchwegges to a single value or to two consecutive values. To
erasures and copies, or by collecting the relevant setistiate, we are not aware of a similar derivation for purely
and presenting them as a histogram or a final output fileon-uniform distributions such as Zipf.

SSDPIlayer supports two modes of operation.siim- We use SSDPlayer to illustrate data movement in the
ulation mode, it simulates the chosen FTL on a raw I/Oniform case, where it is well-understood. We then show
trace or on a synthetic workload, illustrating the SSD statew a visual illustration can shed some light on the non-
at each step. This illustration is continuous, thus formingiform case, where data movement is complex and not
a “video” of the data movements that take place duririglly understood.
execution. This mode is useful for testing and analyzingThe Greedy FTL in SSDPlayer implements greedy
various features without, or before, implementing them garbage collection within each plane, and a page alloca-
a full scale simulator or hardware platform. tion scheme that balances the number of valid pages be-

In visualizationmode, SSDPlayer illustrates operatiortsveen planes. All pages have the same color, but the page
that were performed on an upstream simulator or devifd.changes to a checkered pattern if it has been copied to
The input in this mode is an output trace generated byaanew block during garbage collection. Invalid pages are
simulator, hardware evaluation platform, or a host levetossed out, but maintain their fill color and pattern until
FTL, describing the basic operations that were performtiety are erased.
on the flash device — writing a logical page to a physical In the Greedy-Uniformdemo, the basic manager is ex-
location, changing block state, etc. This mode is usekduted with a small SSD and a uniform random workload.
for illustrating processes that occur in complex researthis video shows that shortly after the SSD’s logical ca-
and production systems, without porting their entire set pécity is filled and garbage collection begimndinValid
features into SSDPlayer. stabilizes at 10-11 pages. The portion of each block that

The SSDPIlayer display, depicted in Figure 1, is orgi-taken up by valid pages transferred at garbage collection



is clearly visible thanks to their different pattern.

(@)

We use the same SSD and FTL with a Zipf workload. valid count =3
The Greedy-Zipf demo shows thaMinValid converges Erase count
much slower and at a higher value of 15-16 pages. The
reason is that cold pages that are rarely updated remain (b)

valid during consecutive garbage collection invocations. ~ Valid count=10
As a result, write amplification increases, leaving less Erase count =2
space available in the erased blocks for invalid copies of

hot pages, thus causing even more frequent garbage col- -
lection, and so on. This phenomenon is graphically visi- \éfggecc%”ur:t
ble as a dense groupingiof/alid (X) marks on the plainly

filled pages that represent user writes. Figure 2: Close-up of one block during thdotCold-1demo

. with Zipf workload, tagged with 10 temperature ranges, \&her
4 Hot/Cold Data Separ ation red (1) is the hottest and blue (10) is the coldest. The valicght

write amplification and, respectively, garbage collectioit"®: Where itis equal tMinvalid. The MinValid pages that

e copied to a clean block during previous garbage cadlest
_costs_and cell wear [8, 19]. De_snoyers [8] analyzes Caﬁ%ﬁlled with a checkered pattern. This demo shows thei por
in which the hot and cold portions of the workloads a

- ) . SR on increasing until it stabilizes at roughly half the btcgize.
each accessed with different uniform distributions, show- g gny

ing that separating them to different partitions with gieeghis block. Figure 2 shows snapshots of the first block in
garbage collection results in the same write amplificatighe device during this demo.
as in the uniform case. Stoica and Ailamaki [19] analyze aywhen we separate the data into two or three partitions,
workload with severalemperaturesThey show that sev- we observe a process similar to thaHatCold-1, because
eral temperatures can be grouped into the same parti{igithin each partition, pages are still accessed with a rel-
without increasing the write amplification, as long as thgively high skew. However, this behavior changes when
skew within each partition does not exceed a certain qge define five partitions, one for every two temperatures.
gree. The conclusions of both studies are based on a rigair this trace, this granularity is fine enough to reduce
ous analysis of data movement processes. In this sectip@, skew in the cold partitions, so that garbage collection
we use SSDPIlayer to show how a graphical visualizatigjihin each partition behaves as with a uniform workload.
can greatly clarify these processes and is certain to asgigfeed, in theHotCold-5demo MinValid stabilizes at 10-
in analyzing more complicated scenarios. 11 pages like itGreedy-Uniform This process, described
The HotCold FTL separates pages into partitions agy Desnoyers [8], is seen clearly in the demo. We be-
cording to their temperature. It is used with traces {eve much more complicated phenomena can be identi-

which each input write request is tagged by a temperattigg] and analyzed as visualization becomes a standard re-
tag. The user specifies the number of partitidhsnd the search tool.

highest temperature of pages that belong to each patrtitign.
Each plane haP active blocks, on which pages of eac Reusable SSD
partition are written. When an active block is full, a newhe recenReusable SS[23] reuses flash pages for addi-
clean block is allocated for this partition. Greedy garbagienal (secondl writes before they are erased. To perform
collection is used, determining partition sizes implicitla second write, the logical page written by the user is en-
according to the number of writes with each temperatuteoded with a special encoder that adds redundancy bits,
As a reference point, we first run théotCold FTL producing an output that is twice the page size and can
with one partition and a Zipf workload where requestse written on a pair of physical pages that have already
are tagged with ten different temperatures. HwCold- been programmed. The encoder guarantees that writing
1 demo is essentially a replay of the demonstration fhe new data will only require increasing the cell voltage
Greedy-Zipf It shows how a simple addition of colors caevel, thus complying with standard flash programming
facilitate our understanding of the process describeddanstraints.
Section 3: before garbage collection starts, the red pages,he commonly used formula for write amplification
which belong to the top five temperatures (and only 2% oc&nnot be used when additional writes are performed be-
the data), occupy roughly half of each block, representifaye the block is erased. The derivation in [7] does not
their portion of accesses in the trace. As the garbage amttend trivially to this case, because the number of addi-
lection process advances, blue (cold) checkered (copigdhal writes that can be performed depends on the way in-
pages occupy increasing portions of each block, mostwaflid pages or entire blocks are reused. In fact, since some
them remaining valid until the next garbage collection aedundancy must always be added to the logical data to
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enable second writes, the conventional definition of wrigailt, the logical writes per erasure increase to 32, rep-
amplification does not accurately represent flash utilizasenting a significant benefit from second writes. As a
tion in this context. Several models, with varying degreesference, recall that the best partitioning of this trace a
of complexity, were suggested for analyzing the propererding to temperature (in the HotCold-5 demo) resulted
ties of second writes in various designs [15, 16, 20]. Vile MinValid=10, corresponding to 22 writes per erasure.
use SSDPlayer to show how a graphical illustration cdie two versions of Reusable SSD demonstrate the power
provide important insights for such complex designs. of visualization as a research tool for new techniques and
The Reusable FTL implements second writes insystem designs. The insights gained from these visual ex-
SSDPlayer. Each block is first written normally by firgperiments were valuable for formalizing the utilization of
writes. When it is chosen by the garbage collector it iish with and without second writes, and for designing an
either erased orecycled— allocated for second writesoptimal garbage collection scheme [20].
without erasuré Upon receiving a write command, if a The full Reusable SSD design is much more complex.
recycled block is available, a second write is performéperforms second writes in parallel to blocks in different
on a pair of physical pages in the recycled block whopéanes, identifies cold data without external tagging, and
data has been invalidated. handles encoding failures and mapping constraints [23].
Pages are colored according to the write level of thélhe implications of Reusable SSD for device lifetime and
logical page. When a page is copied to a new block b@erformance have been thoroughly evaluated by a detailed
fore erasure (such copies are always performed as figplementation in DiskSim [5]. We take advantage of
writes), it maintains the color of iteriginal write level, this implementation to illustrate the full Reusable SSD
but changes its texture to that of an internal write. Thudesign in SSDPlayer. We added a logging mechanism to
the different colors represent the portion of the data writie implementation in DiskSim, which logs all physical
ten in first and second writes within both user and internattite commands, garbage collection procedures, and state
writes. In addition, we replaced the write amplificationhanges to a trace file. In the onliRarallelReusable-
histogram with one showintpgical writes per erasure demos we use this trace file as input to SSDPlayer in vi-
With N pages per block and first writes only, logical sualization mode to visualize the complex data movement
writes per erasure are equivalent to a write amplificatiomthe full Reusable SSD design with Zipf and real work-
of 1. With second writesN x 1.5 logical writes per era-loads.

sure are the maximum value achievable when all pagéas
are fully utilized for two writes, with no internal writes. Other Data M ovement Processes

In the Reusabledemo, we run the Reusable FTL on gve discuss here several popular flash optimization do-
small SSD withN=32 and a Zipf workload. It shows thatmains that we plan to make available in future versions
most of the pages are utilized for two writes, but that magy SSppPlayer. Data movement plays a major role in all of
of the logical pages written as second writes (blue) afgem, occurring within complex interacting processes. We
still valid when the block is erased and must be copied d@scribe how visualizing these processes will help to un-
a clean block (checkered). This means that pages writi@d}stand them and to optimize the systems in which they
without prior erasure of the block end up occupying newpecur.
erased blocks when they are copied, reducing the benefiga|p. The effect of various redundancy schemes such
from second wri_tes. Indeed, only 26 logical writes (out ¢fs RAID5 and erasure coding on SSD performance and
Nx1.5=48 possible) are performed per erasure. Althougfaay is a hot research topic [6, 9, 12]. The performance of
this is more than the 17 writes per erasure achieved Wiffsse schemes is greatly affected by the data movements
first writes 0”')3,_ flash utilization can clearly improve.ihey incur, which are complicated to the point where visu-
This understanding motivated the use of second writesjf; ation is crucial for understanding them. Parity update
Reusable SSD for hot pages only. are a major contributor to write amplification and accel-

TheHotColdReusabl&TL uses second writes only forerated wear, especially in update schemes that were orig-
hot data, which it identifies by the temperature tag in thea|ly designed for hard drives [6]. The location of parity
trace. We run this FTL in thélotCold-Reusablelemo, pjocks as well as the availability of previous, invalid data
with the Zipf workload from the HotCold demos, wher@nd parity blocks, greatly affect the durability of the sys-
requests are tagged with ten different temperatures. Segn and its recovery costs. We are currently extending
ond writes are used for the top 5 temperatures. The deg®pplayer to include notions of parity and stripes, so that
shows that pages written in second writes are almost @e distribution of parity and data throughout the device
ways invalid by the time their block is erased. As a ryj|| be easily visible and stripes can be discerned.

2The detailed conditions for block recycling are specified thg CaChmg' _SSDS that are used as a CaCh'”g tier e_m_
Reusable SSD design [23]. ploy an additional management layer, further increasing
3This value is derived fronMinValid=15 in the Greedy-Zipf demo. the complexity of data movement processes. Data may




move as a result of varying the overprovisioned spacelime®. We encourage researchers and developers to use
read and write cache sizes [17], or the movement of padleis tool for their analysis and to contribute to the online
within the garbage collection process may depend on dgpository.
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