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Abstract

In today’s networked storage environment, it is common
to have a hierarchy of caches where the lower levels of the
hierarchy are accessed by multiple clients. This sharing can
have both positive or negative effects. While data fetched
by one client can be used by another client without incur-
ring additional delays, clients competing for cache buffers
can evict each other’s blocks and interfere with exclusive
caching schemes.

Our algorithm, MC2, combines local, per client man-
agement with a global, system-wide, scheme, to emphasize
the positive effects of sharing and reduce the negative ones.
The local scheme uses readily available information about
the client’s future access profile to save the most valuable
blocks, and to choose the best replacement policy for them.
The global scheme uses the same information to divide the
shared cache space between clients, and to manage this
space. Exclusive caching is maintained for non-shared data
and is disabled when sharing is identified. Our simulation
results show that the combined algorithm significantly re-
duces the overall I/O response times of the system.

1. Introduction

Caching is used in storage systems to provide fast access
to recently or frequently accessed data, reducing I/O delays
and improving system performance. In many storage sys-
tem configurations, client and server caches form a two- or
more layer hierarchy. With a single client, the effectiveness
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of such hierarchies is optimal when caches are kept exclu-
sive; a data block should be cached in at most one cache
level at a time, avoiding data redundancy [29].

When the lower levels of the hierarchy are accessed by
several clients, data sharing may occur. Sharing introduces
both positive and negative effects on the performance of a
multilevel cache. On the positive side, blocks fetched by
one client may later be requested by another client. The
second client experiences the effect of prefetching, when
blocks are present in the shared cache and do not have to be
fetched synchronously.

On the negative side, sharing introduces two major chal-
lenges. The first is maintaining exclusivity: a block may
be cached in the first level cache by one client and in the
second level by another. Furthermore, exclusivity may de-
prive clients of the benefit of sharing described above, since
blocks fetched by one client are not available for use by
others. Several previous studies acknowledge this prob-
lem [29, 31], while others assume that clients access disjoint
data sets [26, 28].

The second challenge is meeting the demands of com-
peting clients for space in the shared cache, while minimiz-
ing their interference with each other. A common approach
for allocation in shared caches is partitioning, where each
client is allocated a portion of the cache buffers according
to a global allocation scheme [14, 28]. This approach is
problematic when blocks are accessed by several clients and
might belong to more than one partition.

We present MC2, an algorithm for managing multilevel
shared caches. We show that it enhances the positive effects
of sharing and reduces the negative ones, by choosing the
right replacement policy. MC2 relies on information pro-
vided by the application running on each client. The clients
are expected to provide a division of accessed blocks into
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Figure 1. Our storage model consists of n cache lev-
els, with possibly several caches in each level. READ and
READ-SAVE fetch a block from level i to level i − 1, DE-
MOTE sends a block from level i − 1 to level i.

ranges and the frequency of access as well as the access
pattern to each range. Previous studies have demonstrated
that such information, in the form of application hints, is
often available and is always useful for managing cache
buffers [4, 5, 21, 24, 30].

The hints are used for two levels of management. On the
local, per-client level, the hints determine which ranges are
allocated space in the cache, and which replacement policy
is most suitable for each range. On the global, system-wide
level, the hints determine the replacement policy suitable
for shared ranges and whether caching in each range is ex-
clusive or inclusive. A global LRU-based scheme is used to
divide the shared cache space between competing clients.

We examine our approach by simulating TPCH and
TPCC workloads with a varying number of clients, com-
paring MC2 to LRU, Demote [29], ARC [19], MultiQ [31]
and an optimal lower bound on I/O response time [9]. Our
results show that MC2 reduces I/O response times below
those of all other online policies, in almost all cache sizes,
both for the single client setting and for multiple clients.
MC2 is the best policy to use in all sharing scenarios, with
performance close to the optimal lower bound.

2. Storage model

Our model, shown in Figure 1, consists of several clients,
each with its own cache. There are n cache levels, orga-
nized in a tree rooted at cachen, which is attached to the
storage level, Disk. The access cost of cache level i is Ci.
The cost of a disk access is CDisk. The cost of demoting
a block from level i − 1 to level i is Di. We assume that
a lower cache level carries an increased access cost, and
that demoting and access costs are equal for a given level.
Namely, C1 = D1 < C2 = D2 < . . . < Cn = Dn < CDisk.

Typically, the caches in the first level reside in the
clients’ memory and cachen resides on the storage con-
troller. Additional cache levels may reside in either of these
locations, as well as additional locations in the network.
The access costs, Ci and Di, represent a combination of
computation, network, and queuing delays. CDisk also in-
cludes seek times. The model is demand paging, read-only
(for the purpose of this work, we assume a separately man-
aged write cache), and defines three operations:

• READ (x, i) – move block x from parent(cache)
in level i + 1 to cache in level i, removing it from
parent(cache). If x is not found in parent(cache),
READ(x, i + 1) is performed recursively, stopping at
Disk if x is not found earlier.

• READ-SAVE (x, i) – copy block x from
parent(cache) in level i + 1 to cache in level i.
If x is not found in parent(cache), READ-SAVE

(x, i + 1) is performed recursively, stopping at Disk
if x is not found earlier.

• DEMOTE (x, i) – move block x from cache in level i to
parent(cache) in level i + 1, removing it from cache.

Following previous studies [14, 28, 29], we assume no
cooperation between caches in the same level. Each client
may page blocks only from the cache directly attached to
it, or its ancestors. Furthermore, we assume a client has no
information about applications running on other clients.

Our goal is to minimize the average I/O response time
for each client. While the load on the disk, the distribu-
tion of requests, and the access pattern all affect disk access
costs, we focus on the performance of the cache hierarchy.
Therefore, we assume a constant cost for all disk accesses.
However, we note that when data sharing occurs, a cache
miss does not always incur the same delay; when two clients
fetch the same block, the second client issuing the request
may experience a shorter response time than the first, as the
request is already being processed.

While reducing I/O response times is our main goal,
we wish to maintain a “fair” distribution of space between
clients whenever possible. By “fairness” we will measure
the performance improvement experienced by the clients,
and not necessarily the amount of space allocated to them.
We rely on a definition of fairness for processor multi-
threading [8] which we adapt to cache performance. We
define the speedup of a client as the ratio between the com-
pletion time of its application when running alone and its
completion time when running in a shared system. Fairness
is defined as the minimum ratio between speedups in the
system: Fairness ≡ speedupj

speedupk
, where Clientj is the client

with minimal speedup in the system, and Clientk is the one
with maximal speedup. It follows from this definition that
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0 < Fairness ≤ 1. Perfect fairness is achieved when
Fairness = 1, which means that all clients experience the
same speedup (or slowdown).

Due to lack of space, we do not present the fairness main-
tained by all policies in our evaluation. However, Our ex-
periments show that MC2 is able to maintain fairness close
to that of LRU, even though it does not always use LRU (or
LRU-based policies) to manage the shared cache.

3. The MC2 algorithm

Our algorithm, MC2, consolidates the management of
blocks that share the same access characteristics. For exam-
ple, blocks from the same database file or index tree level
belong to the same range, and are managed in their own
cache partition. The size of each partition is dynamically
adjusted, as explained below. The division of blocks into
ranges, along with each range’s size, access pattern, and the
frequency of access to it, are supplied in the form of appli-
cation hints by each client in the system. Each I/O request
(in all cache levels) is tagged by the application with the
range identifier of the requested block.

Whenever a new block is brought into the cache, and an
old one must be evicted, the above information is used to
answer three basic questions: Which client must give up a
block? Which of its partitions must grow smaller? Which
is the least valuable block in this partition?

In other words, the allocation aspect of MC2 determines
the quota of cache space for each range, and the replace-
ment aspect manages blocks within each range. Each aspect
is handled in two levels: globally (system-wide) and locally
(per client). The global allocation scheme determines the
quota of each client in the shared cache space, according to
its frequency and efficiency of use of the cache. The local
scheme determines the amount of space each range is allo-
cated from its client’s quota, according to its marginal gain.
The local replacement scheme chooses the best replacement
policy for each client’s range, according to its hinted access
pattern. The global replacement scheme chooses the best
policy for shared ranges according to the combination of
their access patterns.

3.1. Local allocation and replacement

We first describe how blocks are managed within the
space allocated for each client. This space consists of the
client cache, which is the first level cache used only by
this client, and the space allocated for this client in shared
caches in lower levels. We describe the global allocation
and replacement schemes in the following subsections.

Within the space allocated for it, each client manages
its blocks using Karma [30], an algorithm which provides
exclusive allocation and replacement in a multilevel cache

hierarchy with a single client. Note that the space allocated
for each client can be viewed as such a hierarchy. We de-
scribe the main principles of the local management, and re-
fer the reader to the description of Karma for further details.

Karma relies on the same application hints described
above. These hints are used to compute the marginal gain
for each range. Marginal gains induce an order of priority
on all ranges – and thus on all blocks – in a trace. This or-
der is used by each client to choose the ranges with highest
priority and allocate a fixed partition for each one of them
in its cache. Each range is managed separately, according to
its access pattern. When a block is brought into the cache,
a block from the same range is discarded, according to the
range’s policy. The best replacement policy is used for each
access pattern: MRU for sequential and looping references,
and LRU for random references.

Each cache level stores only blocks belonging to its as-
signed ranges. Blocks that will be saved in the cache are
fetched using READ, while blocks that will be immediately
discarded are fetched using READ-SAVE. All evicted blocks
are sent to the lower level using DEMOTE, and the lower
level saves them if space is allocated for their range. When
a range is split between two cache levels, exclusivity in
its partition is achieved by maintaining a continuous LRU
stack in both levels.

Due to space limitations, we refer the reader to the
description of Karma [30] for details on the structure,
generation and transmission of hints, the definition and
computation of marginal gain, the management of split
partitions, the reorganization of the cache when new hints
are supplied by the application, and the applicability of hint
based management to various application domains.

Approximate hints. In addition to the looping, sequen-
tial, and uniform random accesses handled by Karma, MC2

also handles skewed ranges, which are accessed with non-
uniform random distribution. A skew of a range is defined
by the pair (x, y), where x% of the accesses to this range re-
quest y% of its blocks. The skew implies that some blocks
in the range have a higher access frequency than others, and
are thus more valuable, but it does not reveal which blocks.

In order to determine what amount of space should be
allocated to skewed ranges, previous studies compute the
marginal gain of different partition sizes at run time, us-
ing ghost caches [15]. In order to avoid the resulting space
and computational overheads, we split skewed ranges into
several subranges with fixed sizes and decreasing marginal
gain. Space is allocated only to the subranges with the
highest marginal gain, and their partitions are managed in
a continuous LRU stack, allowing LRU to keep the most
frequently accessed blocks from this range in the cache.

A skew of (x, y) splits range r into two subranges.The
size of the first subrange is y% of the size of r, and the fre-
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quency of access to it is assumed to be x% of the frequency
of r. The second subrange is its complement, both in size
and in frequency. The marginal gain is computed for each
subrange as if it were accessed uniformly. When the access
skew of a data set is available to the application or to an ad-
ministrator (as in some well-tuned database systems), more
accurate hints can be used. A skew with s pairs of parame-
ters, (x1, y1, ), ..., (xs, ys, ), divides a range into s + 1 sub-
ranges, enabling refined allocation decisions. When no in-
formation is available, MC2 follows Pareto’s principle and
divides the range according to a skew of (80,20).

3.2. Global allocation

We partition the cache between clients according to a
global allocation scheme similar to that used in LRU-SP [4]
for multiple processes. Initially, each client is allocated an
equal share of the cache, which is then dynamically adjusted
to reflect this client’s use of the shared cache. Whenever a
new block is fetched into the cache, a victim client is chosen
– a client whose block will be evicted to make room for the
new block. In global LRU allocation, this client is the one
holding the LRU block in the cache. This approach penal-
izes a client that does not use LRU replacement in its share
of the cache. Such a client will not replace the LRU block,
and will be constantly chosen as victim. To avoid this prob-
lem, we maintain an LRU stack of partitions. The victim
client is the owner of the least recently used partition. The
share of the victim client is decreased, and a block from its
lowest priority partition is evicted. The allocation for the
client whose block entered the cache is increased. Note that
when its allocation increases, a client may temporarily save
a block with a low marginal gain. The space occupied by
this block will later be used to increase the size of a partition
with a higher marginal gain.

The result of the global allocation scheme is that MC2

favors clients that use the shared cache both frequently
and efficiently. Each access can potentially increase a
client’s share of the cache. Thus, frequency is rewarded
without being hinted or monitored. Furthermore, we need
not worry about clients changing their access frequency,
or joining or leaving the system. If a client no longer
accesses the cache, its partitions become the LRU ones,
and their space is gradually allocated to more active
clients. Partitions which are accessed frequently stay
in the MRU side of the partition stack. Thus, clients
which save valuable blocks are rarely chosen as victims,
and are rewarded for efficient use of their share of the cache.

Allocation of shared partitions. When a range is accessed
by more than one client, MC2 manages its blocks in a sin-
gle shared partition, rather than distributing its allocation
between the clients’ shares. All clients accessing a shared

partition contribute to its allocation. The maximal space is
allocated, from the share of each client, given the marginal
gain it computed for the range and the space available to this
client. Since clients may disagree on the size of the range as
a result of different allocations in the client caches, the total
amount of space allocated for the shared partition does not
exceed the maximal size requested by the clients.

Each client accesses the shared partition with a different
frequency. Thus, a client with a low frequency might
exceed its fair allocation when its blocks are accessed
frequently by another client. If that happens, the shared
partition will not reach the LRU position in the partition
stack, and will not be chosen as victim. This may pre-
vent other clients from saving more valuable blocks in
the cache. To address this problem, we refine the LRU
allocation scheme described above, and use a stack of
(partition, client) pairs. When client c accesses partition
p, the pair (p, c) moves to the MRU position in the stack.
When a block has to be evicted from the cache, the victim
client is the client in the LRU (partition,client) pair.

Isolating local repartitioning. When ClientA is supplied
with a new set of hints which indicate that its access pat-
tern is about to change, it may repartition its cache or re-
size some of its partitions [30]. This does not affect the
space allocated for other clients, unless they share parti-
tions with ClientA. Consider partition P , which is shared
by ClientA and ClientB . As a result of the new hints,
the amount of space allocated for P from ClientA’s share
may decrease. The allocation in the share of ClientB is un-
changed. However, if P holds a range with a high marginal
gain for ClientB , its lower priority partitions may be re-
sized in order to reallocate the buffers removed by ClientA.

3.3. Global replacement

The space allocated for each client in a shared cache is
managed according to the hints this client receives from
the application and forwards to lower levels. Each I/O re-
quest from that client is tagged (by the upper level) with the
client’s ID, along with the original application hint. This
identification refers the block to the partition allocated for
its range. The same hints are used by the shared cache to
choose the best replacement policy for shared partitions.

The global replacement scheme first chooses between
exclusive and inclusive management. Exclusive caching
greatly improves the performance of multiple levels of
cache used by a single client [29, 30]. However, in the
presence of multiple clients, exclusive policies may have
a negative effect, and may even degrade performance be-
low that of an inclusive policy. MC2 distinguishes between
two types of partitions. In non-shared partitions, used by a
single client, exclusivity is maintained by saving demoted
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and READ-SAVE-d blocks, and discarding READ blocks. In
shared partitions, exclusivity is turned off and READ re-
quests are treated as if they were READ-SAVE. A shared
partition stores blocks that were READ, READ-SAVE-d or
demoted. The replacement policy in a shared partition is
chosen according to the combination of access patterns, us-
ing the following guidelines.

Random. When all the clients access the partition in a
random pattern, either with uniform or skewed distribution,
LRU is used to manage its blocks. When some blocks have
higher access frequency than others, a block requested by
one client is likely to be requested soon by another client.
Similarly, a demoted block might be requested again by the
demoting client. Therefore, both read and demoted blocks
are treated equally, allowing LRU to keep in the partition
those blocks that are indeed reused.

Loop. Several clients iterating over the same loop may
advance at different speeds. A block read [demoted] by one
client is likely to be accessed by another client before it will
be accessed again by the client that just read [demoted] it.
In order to allow for this benefit of sharing, shared loop par-
titions are managed by LRU rather than MRU. This type
of management keeps all the blocks in the cache for some
time, allowing other clients to access them at a low cost.

Random and scan. When a range is accessed randomly
by some clients and scanned by others (either sequentially
or in a loop), the scans are not allowed to alter the LRU
stack of the partition. The scanning clients benefit from the
presence of frequently accessed blocks in the shared cache.
The random clients are not harmed because polluting scans
do not affect the content of the shared partition.

4. Experimental testbed

While MC2 is designed to work in n levels of cache, we
compare it to existing policies on a testbed consisting of two
cache levels (n = 2). We simulate a client cache attached to
each client in the first level and a shared second level cache.

We use the PostgreSQL database [20] as a source of I/O
traces and application hints. The query plan generated by its
explain mechanism is used to supply MC2 with the access
pattern for each range, along with a division of all the blocks
into ranges.

We use two benchmarks defined by the Transaction Pro-
cessing Council: TPCH for decision support, and TPCC for
on-line transaction processing (OLTP) [1].

The TPCH traces are used in two different experiments.
The first examines two clients sharing a second level cache,
each executing a stream of one TPCH query, requesting dif-
ferent values each time. Following a previous study [28],
we chose queries 3 and 7. Query 3 is sequential, scanning 3
tables. Subsequent runs of Query 3 result in a looping ref-
erence. Query 7 uses an index tree for most of its accesses.

The data set of Query 3 is a subset of the data set of Query 7.
In the second experiment with the TPCH benchmark,

each of five clients executes a different permutation of the
benchmark queries. The permutations correspond to the
query sets defined in the benchmark, each consisting of all
22 benchmark queries, in different order.

The TPCC workload consists mainly of index accesses,
with a different access skew to each table. Therefore, re-
cency of access is the best indication that a block will be
accessed again. We generate ten separate client traces us-
ing TPCC-UVa [18], an open-source implementation of the
benchmark, and run them concurrently on our simulator.

We compared MC2 to four existing replacement poli-
cies: LRU, its exclusive version, Demote [29], and two
policies which account for frequency as well as recency,
ARC [19] and MultiQ [31]. We simulated the above
policies, and measured the average I/O response time for
each client on a series of increasing cache sizes. We set
C1 = 1, C2 = D2 = 200 and CDisk = 10000µsec [29]
and assume, as in previous studies, that all caches are of
equal size [29, 30]. We refer the reader to the evaluation of
Karma [30] for a discussion of its sensitivity to these sys-
tem parameters. The cache size in the graphs refers to the
aggregate cache size (from the point of view of each client)
as a fraction of the size of the data set. Thus, a cache size
of 1 means that every single cache is big enough to hold
one-half of the data set.

A useful tool for evaluating a cache replacement policy is
comparison to the performance of an optimal offline policy.
The optimal policy for a single cache is Belady’s MIN [3],
which evicts the block which will be accessed again furthest
in the future. The optimal replacement policy for a multi-
level cache in a model with DEMOTE is unknown. Since
we are interested in the I/O response time experienced by
such a policy, we use Gill’s lower bound on the optimal I/O
response time for a single client1 [9].

5. Results

Does MC2 achieve the shortest I/O response times? Our
experimental results show that the answer to this question
is yes. Figure 2 shows the results for the pair of TPCH
queries, 3 and 7. The performance of MC2 (Figure 2(c)) is
very close to the optimal lower bound, and is the best of all
online policies, both for the single client setting and for both
clients executing concurrently. Based on the hints, MRU re-
placement is chosen to manage loop accesses, and LRU is
used for index accesses. By combining the right replace-
ment policy with exclusivity, I/O response times decrease
linearly with the increase in available cache space.

1The extension of this lower bound for multiple clients assumes a fixed
interleaving of the clients’ requests. We prefer to avoid this assumption in
our evaluation and analysis.
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Figure 2. TPCH queries 3 and 7. Sharing has a positive effect for inclusive policies, or for exclusive policies that demote invaluable
blocks. When the performance of a single client (“baseline”) is close to the optimal lower bound, sharing has a negative impact.
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Figure 3. TPCH query sets on 5 clients. Although the performance of MC2 degrades due to sharing, its I/O response times are
significantly lower than all other online policies, both with a single client (“baseline”) and with multiple ones (“shared”).

ARC is the best inclusive policy in this experiment. Still,
the client running query 3 suffers from managing its loop
blocks in an LRU based policy, and the client running query
7 does not utilize all available cache space due to data re-
dundancy. Demote keeps the caches exclusive for the single
client workload, but manages the loop blocks with LRU.
The situation is somewhat improved by sharing for both
policies, but their performance is far from that of MC2.

Figure 3 shows the results for the TPCH query sets.
MC2 achieves the shortest I/O response times in both
single- and multi-client settings. For a single client, this
is the result of combining exclusivity with the best replace-
ment policy for each hinted access pattern. For multiple
clients, this is the result of exploiting data sharing when-
ever it is useful, and partitioning the cache to minimize the
interference between clients.

Figure 4 shows the performance of the different policies
on 10 TPCC clients. MC2 performs as well as the exclu-
sive policy in the single client setting. Only in the smallest
cache sizes (1/16 and 1/8), demoted blocks are not accessed
frequently enough to justify the cost of demotion. MC2 is
better than all inclusive policies for multiple clients, with
I/O response times shorter than the lower bound for a single
client, thanks to the prefetching effects of sharing.

The hints used by MC2 in this experiment for the

non-uniform accesses were fairly accurate. Random
accesses were grouped into a single range, and the skew
was computed according to their distribution in the traces.
We ran the same experiment using a default (80,20) skew,
with similar results. The difference in I/O response time
was 0.6% on average for all cache sizes, and was always
below 2.1%. This demonstrates that MC2 is able to save
the most valuable blocks in the cache even when supplied
with approximate hints.

Does MC2 benefit from data sharing more than existing
policies? Ironically, the answer is no. Since MC2 performs
so well for a single client, it does not leave much room for
improvement by sharing. Our results show that the worse
performance a policy achieves with a single client, the more
it benefits from sharing. This is not surprising; long I/O
response times often indicate a poor utilization of the sec-
ond level cache. This is usually caused by data replication.
When several clients share the second level cache, the in-
terleaving of their accesses increases the exclusivity of the
cache levels. ARC, MultiQ and LRU demonstrate this be-
havior in the following experiments.

When the pair of TPCH queries in Figure 2 execute con-
currently, loop blocks are accessed out of order. This greatly
improves the performance of the inclusive polices, as shown
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Figure 4. 10 clients running TPCC. MC2 maintains exclusive caching for a single client, utilizing the entire aggregate cache.
When sharing is identified, exclusivity is disabled in the shared cache. Valuable blocks fetched by one clients act as “prefetches” for
another, reducing I/O response times below those of the optimal lower bound for demand paging.

by the results of ARC in Figure 2(a). Figure 4(b) shows
results for 10 TPCC clients executing concurrently. Since
the access distribution is similar for all clients, the inclu-
sive policies (LRU, MultiQ and ARC) achieve shorter I/O
response times than for a single client. Blocks fetched by
one client are also used by other clients, so it is useful to
keep them in the shared cache.

In some cases, poor utilization of the second level cache
is caused by the wrong choice of replacement policy, even
when exclusivity is maintained. Specifically, invaluable de-
moted blocks do not contribute to a reduction in I/O re-
sponse time. In such cases, when several clients “inter-
fere” with the exclusivity of one another, the blocks saved in
the shared cache by one client are useful for another client.
This positive effect is demonstrated by Demote in the small
cache sizes on TPCH workloads (Figures 2(b) and 3(c)).

MC2 does benefit most from sharing on the TPCC work-
load, demonstrating that sharing can also have a positive
effect when the cache is utilized well for a single client.
When the workload performed by multiple clients is non-
uniform, yet similar for all clients, every synchronous fetch
by one client is a potential “prefetch” for another. A re-
placement policy which saves the most “popular” blocks in
the cache may achieve shorter wait times than the lower op-
timal bound for a single client. This positive effect of shar-
ing is demonstrated in Figure 4(c) for MC2.

MC2 disables exclusive caching for this workload.
Valuable random blocks are kept in the shared cache, to al-
low for the benefit of data sharing. The looping patterns are
identified using hints, and shared loop partitions are man-
aged with LRU in the second level cache. This keeps loop
blocks in the cache long enough for other clients to use,
creating a prefetching effect. As a result, the I/O response
time for multiple clients is shorter than those of the rest of
the policies (Figure 4(b)). In some cache sizes they are also
lower than the optimal lower bound. This is possible be-
cause the lower bound was computed for a single client in a
demand paging model.

Policy LRU Demote ARC MultiQ MC2

5 TPCH query sets 16.12% 7.6% 31.54% 19.59% N/A
TPCH Query 3 29.75% 30.74% 30.44% 31.5% 25.09%
10 TPCC clients 37.83% 30.74% 32.12% 38.07% 34.01%

Table 1. Max. reduction in avg. I/O response time due to
sharing. N/A means sharing never improves performance.

Clearly, we would like to avoid policies whose benefit
from sharing is the result of poor performance for each
single client. This appears to be a problem shared by
all existing policies. In contrast, MC2 achieves the best
performance for a single client and benefits from sharing
by multiple clients. This makes it the best policy for both
single- and multi-client workloads. Table 1 summarizes
the maximal reduction in I/O response time due to sharing,
experienced by all policies.

Is MC2 better than existing policies in avoiding the neg-
ative effects of sharing? In the majority of our experi-
ments, the answer is yes. Sharing has a negative impact on
MC2 only when it cannot be avoided, as opposed to the rest
of the policies, which simply make the wrong management
decisions.

When the cache hierarchy is fully and efficiently utilized
for a single client by a strictly exclusive policy, sharing usu-
ally has a negative effect. This behavior is observed in two
cases. The first is when the aggregate cache is big enough to
hold the entire data set or most of it. The I/O response times
for an exclusive policy approach those of the optimal lower
bound, regardless of its replacement decisions. The impact
of sharing in this case is always negative, since it interferes
with exclusivity. Demote exhibits such behavior in the large
cache sizes for the TPCH traces, in Figures 2(b) and 3(c).

The second case in which sharing and exclusivity cre-
ate a negative effect is when exclusivity is combined with
the best replacement policy for the access pattern. In such
cases, clients “steal” valuable blocks from one another, as
READ blocks are automatically discarded. Demote demon-
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Policy LRU Demote ARC MultiQ MC2

5 TPCH query sets N/A 130% N/A 0.21% 32.93%
TPCH Query 3 N/A 151% N/A N/A 4.97%
10 TPCC clients N/A 19.83% N/A N/A N/A

Table 2. Max. increase in average I/O response time due
to sharing. N/A means sharing never degrades performance.

strates this scenario on the TPCC workload in Figure 4(c).
Exclusivity aside, sharing can also have a negative ef-

fect due to competition between clients. When each client
is able to fully utilize the shared cache, other clients take
up valuable space, harming each other’s performance. This
is the case of MC2 in the TPCH query sets in Figure 3(c).
The clients execute the queries in different order, and their
working sets do not completely overlap. Sharing has a neg-
ative impact due to increased load on the shared cache.

Clearly, we would like to avoid exclusive caching
whenever it degrades performance. In such cases the
negative effect of sharing indicates poor management,
as it does in the case of Demote. In contrast, a negative
impact which results purely from increased load on the
shared resources cannot be avoided, and does not indicate
a weakness of the management policy. This is the case
of MC2, which achieves the best performance both for a
single client and for multiple ones. Table 2 summarizes
the maximal increase in I/O response time due to sharing,
experienced by all policies.

We conclude that MC2 is the best policy for managing a
hierarchy of multiple cache levels used by multiple clients.
it achieves the shortest I/O response times in all our exper-
iments. By combining exclusive caching and application
hints it guarantees the best performance for a single client
workload. The same principles are used for each client in
a multi-client setting, by the local allocation and replace-
ment scheme. The application hints are further leveraged to
choose between inclusive and exclusive caching, optimiz-
ing performance in the presence of multiple clients. Thanks
to the global allocation scheme, the most valuable blocks in
the system are saved in the shared cache, while maintaining
a high degree of fairness between competing clients.

6. Related work

Several approaches are used to handle caching in the
presence of data sharing.

Policies oblivious to sharing. Many replacement poli-
cies are oblivious to the cache level they manage and to
the number of clients accessing the cache. Their perfor-
mance may be implicitly affected by the interleaving of ac-
cess patterns, but no effort is made to distinguish between
different sources of requests. Examples for such policies
are LRU, MRU, ARC [19], and MultiQ [31]. Some policies
which attempt to optimize aspects of disk scheduling, such

as DiskSeen [7] and STEP [17], also fall into this category.
Exclusive multilevel policies. Exclusive caching is dif-

ficult to achieve and is not always efficient in a system with
multiple clients. Several policies designed for global man-
agement of the cache hierarchy do not address the problems
demonstrated in our experiments. Some examples are the
algorithm derived from using write hints [16], X-Ray [26],
the global algorithm in [31], and Karma [30]. In heteroge-
neous caching [2], some degree of exclusivity is achieved
by managing each cache level with a different policy.

A different group of multi-level cache policies specifi-
cally address multiple clients. The first to do so was De-
mote [29], when the notion of exclusive caching was first in-
troduced. Ghost caches are used to estimate the value of de-
moted blocks compared to that of READ ones. PROMOTE [9]
uses probabilistic filtering to decide which blocks are for-
warded to upper cache levels. A block forwarded to one
client is removed from the shared cache. In ULC [14], the
client instructs the server which blocks to save in its cache.
Global LRU allocation is employed for multiple clients.
The issue of shared data is not addressed. In uCache [22] a
small LRU cache is allocated for high-correlated data, and
the server keeps track of blocks saved in each client.

MC2 does not assume, or detect, the degree of sharing.
Instead, shared blocks are identified by client hints, which
also disclose the combination of access patterns. Exclusive
caching is maintained only when it is known to be useful.

Cooperation. Cooperative caching in distributed file
systems can significantly reduce the amount of disk ac-
cesses. Most protocols incur varying amounts of overhead
of global lookup and management [6, 22, 25, 27]. When
clients leave or join the system its state is altered, compro-
mising the efficiency of the protocol.

MC2 achieves very low I/O response times by taking
advantage of sharing in the shared cache, with less overhead
and vulnerability to change.

Cache partitioning. Partitioning is used widely in poli-
cies designed for multiple processes sharing the file system
cache. One approach partitions the cache between detected
access patterns [12, 15]. Allocation is based on the observed
marginal gain of each partition. The detection mechanisms
assume that each block is accessed in one access pattern.
Argon [28] uses a similar approach for a storage server. Its
services are assumed to be completely independent with no
data sharing. Several policies designed to manage the buffer
cache of a database server specifically address data sharing.
The owner is either the first query to fetch the block [24], or
the transaction which assigns it the highest priority [13].

Prefetching as a form of data sharing. Although
prefetching is not part of our storage model, its effects may
be similar to those of sharing. Prefetched blocks are ac-
cessed in two interleaving patterns: the one in which they
are read by the application, and the sequential access of
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prefetching. Even when the application accesses the blocks
sequentially, its accesses are not necessarily synchronized
with the stream of prefetches.

SARC [11] and AMP [10] combine caching and
prefetching in a storage server. SARC adjusts the stack po-
sitions of prefetched blocks to avoid eviction. In AMP the
degree of prefetching is adapted separately for each stream.
When prefetching is done by the application itself, its man-
agement can be combined with additional information dis-
closed by the application, as in TIP2 [23] and LRU-SP [4].

Although MC2 does not address prefetching explicitly,
it enables clients to enjoy effects similar to prefetching,
when clients use each other’s blocks. By addressing differ-
ent sharing scenarios, MC2 lays the foundations for com-
bining caching and prefetching in a positive manner.

7. Conclusions

MC2 leverages the same hints for choosing the best re-
placement and allocation schemes for a single client’s ac-
cess pattern, and the combination of access patterns of mul-
tiple clients. The hints are also used to derive the degree
and type of data sharing, and choose between inclusive or
exclusive caching accordingly. Our experiments show that
the I/O response times achieved by MC2 are significantly
lower than those achieved by existing policies.
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