
Karma: Know-it-All Replacement for a Multilevel cAche

Gala Yadgar
Computer Science Department, Technion

Michael Factor
IBM Haifa Research Laboratories

Assaf Schuster
Computer Science Department, Technion

Abstract

Multilevel caching, common in many storage configu-
rations, introduces new challenges to traditional cache
management: data must be kept in the appropriate cache
and replication avoided across the various cache levels.
Some existing solutions focus on avoiding replication
across the levels of the hierarchy, working well without
information about temporal locality–information miss-
ing at all but the highest level of the hierarchy. Others
use application hints to influence cache contents.

We present Karma, a global non-centralized, dynamic
and informed management policy for multiple levels of
cache. Karma leverages application hints to make in-
formed allocation and replacement decisions in all cache
levels, preserving exclusive caching and adjusting to
changes in access patterns. We show the superiority
of Karma through comparison to existing solutions in-
cluding LRU, 2Q, ARC, MultiQ, LRU-SP, and Demote,
demonstrating better cache performance than all other
solutions and up to 85% better performance than LRU
on representative workloads.

1 Introduction

Caching is used in storage systems to provide fast ac-
cess to recently or frequently accessed data, with non-
volatile devices used for data safety and long-term stor-
age. Much research has focused on increasing the per-
formance of caches as a means of improving system per-
formance. In many storage system configurations, client
and server caches form a two- or more layer hierarchy,
introducing new challenges and opportunities over tradi-
tional single-level cache management. These include de-
termining which level to cache data in and how to achieve
exclusivity of data storage among the cache levels given
the scant information available in all but the highest-level
cache. Addressing these challenges can provide a signif-
icant improvement in overall system performance.

A cache replacement policy is used to decide which
block is the best candidate for eviction when the cache
is full. The hit rate is the fraction of page requests
served from the cache, out of all requests issued by the
application. Numerous studies have demonstrated the
correlation between an increase in hit rate and applica-
tion speedup [10, 12, 13, 19, 22, 27, 48, 49, 51]. This
correlation motivates the ongoing search for better re-
placement policies. The most commonly used online re-
placement policy is LRU. Pure LRU has no notion of
frequency, which makes the cache susceptible to pollu-
tion that results from looping or sequential access pat-
terns [40, 47]. Various LRU variants, e.g., LRU-K [37],
2Q [25], LRFU [28], LIRS [23] and ARC [33], attempt
to account for frequency as well as temporal locality.

A different approach is to manage each access pat-
tern with the replacement policy best suited for it. This
is possible, for example, by automatic classification of
access patterns [13, 19, 27], or by adaptively choos-
ing from a pool of policies according to their observed
performance [4, 20]. In informed caching, replacement
decisions are based on hints disclosed by the applica-
tion itself [10, 14, 38]. Although informed caching
has drawbacks for arbitrary applications (see Section 7),
these drawbacks can be addressed for database sys-
tems [15, 36, 41]. File systems can also derive access
patterns from various file attributes, such as the file ex-
tension or the application accessing the file. The Exten-
sible File System [26] provides an interface which en-
ables users to classify files and the system to derive the
files’ properties. Recent tools provide automatic clas-
sification of file access patterns by the file and storage
systems [16]. Despite the proven advantage of informed
caching, it has been employed only in the upper level
cache.

The above approaches attempt to maximize the num-
ber of cache hits as a means of maximizing overall per-
formance. However, in modern systems where both the
server and the storage controller often have significant

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 169

caches, a multilevel cache hierarchy is formed. Sim-
ply maximizing cache hits on any individual cache in a
multilevel cache system will not necessarily maximize
overall system performance. Therefore, given a multi-
level cache hierarchy, we wish to minimize the weighted
I/O cost which considers all data transfers between the
caches and the cost of accessing each.

Multilevel cache hierarchies introduce three major
problems in cache replacement. The first is the hiding
of locality of reference by the upper cache [51]. The sec-
ond is data redundancy, where blocks are saved in mul-
tiple cache levels [12, 35]. The third is the lack of in-
formation about the blocks’ attributes (e.g., their file, the
application that issued the I/O request) in the lower level
caches [45].

Accesses to the low level cache are misses in the up-
per level. Thus, these accesses are characterized by weak
temporal locality. Since LRU is based on locality of
reference, its efficiency diminishes in the second level
cache. Policies such as FBR [39], MultiQ [51], ARC [33]
and CAR [7] attempt to solve this problem by taking
into account frequency of access in addition to recency.
MultiQ, for example, uses multiple LRU queues with
increasing lifetimes. ARC [33] and its approximation
CAR [7] distinguish between blocks that are accessed
once and those that are accessed more than once. None
of the above policies address the cache hierarchy as a
whole, but rather manage the cache levels independently,
assuming the upper level cache is managed by LRU.

In exclusive caching [29, 49, 51], a data block should
be cached in at most one cache level at a time. One way
to do this is by means of the DEMOTE operation [49].
The lower level deletes a block from its cache when it is
read by the upper level. When the upper level evicts an
unmodified block from its cache, the block is sent back
to the lower level using DEMOTE. The lower level tries
to find a place for the demoted block, evicting another
block if necessary.

We propose Karma, a novel approach to the manage-
ment of multilevel cache systems which attempts to ad-
dress all of the above issues in concert. Karma manages
all levels in synergy. We achieve exclusiveness by us-
ing application hints at all levels to classify all cached
blocks into disjoint sets and partition the cache according
to this classification. We distinguish between a READ,
which deletes the read block from a lower level cache,
and a READ-SAVE, which instructs a lower level to save
a block in its cache (this distinction can be realized using
the existing SCSI command set, by setting or clearing the
disable page out (DPO) bit in the READ command [1]).
We also use DEMOTE to maintain exclusiveness in par-
titions that span multiple caches. By combining these
mechanisms, Karma optimizes its cache content accord-
ing to the different access patterns, adjusting to patterns

which change over time.

The hints divide the disk blocks into sets based on their
expected access pattern and access frequency. Each set is
allocated its own cache partition, whose size depends on
the frequency of access to the set, its size, and the access
pattern of its blocks. Partitions accessed with higher fre-
quency are placed at a higher cache level. Each partition
is managed by the replacement policy most suited for its
set. Since the lower cache levels are supplied with the
application’s hints, they can independently compute the
partitioning, allocating space only for partitions that do
not fit in the upper levels.

Karma is applicable to any application which is able to
provide general hints about its access patterns. Databases
are a classic example of such applications, where the
access pattern is decided in advance by the query op-
timizer. We base our experimental evaluation both on
real database traces, and on synthetic traces with Zipf
distribution. For the real traces, we used the explain
mechanism of the PostgreSQL database as a source of
application hints. For the synthetic workload, we sup-
plied Karma with the access frequency of the blocks in
the data set. We simulated a hierarchy of two cache lev-
els and one storage level for comparing Karma to LRU,
2Q [25], ARC [33], MultiQ [51], LRU-SP [10] and De-
mote [49]. We also defined and implemented extensions
to these policies to apply to multiple levels of cache. The
comparison is by means of the weighted I/O cost.

Karma compares favorably with all other policies:
its use of application hints enables matching the opti-
mal policy to each access pattern, its dynamic repar-
titioning eliminates the sensitivity to changing access
patterns and its exclusive caching enables exploitation
of every increase in the aggregate cache size. When
the aggregate cache size is very small (less than 3% of
the data set), Karma suffers from the overhead of DE-
MOTE, as demoted blocks are discarded before being
re-accessed. For all other cache sizes Karma shows great
improvement over all other policies. Karma improves
over LRU’s weighted I/O cost by as much as 85% on
average on traces which are a permutation of queries.
On such traces, Karma shows an additional 50% aver-
age improvement over the best LRU-based policy (De-
mote) when compared to LRU and it shows an additional
25% average improvement over the best informed policy
(LRU-SP).

The rest of the paper is organized as follows. Our
model is defined in Section 2. In Section 3 we define
marginal gains, and in Section 4 we describe Karma’s
policy. The experimental testbed is described in Sec-
tion 5, with our results in Section 6. Section 7 describes
related work. We conclude in Section 8.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association170

Figure 1: Our storage
model consists of n levels
of cache, with one cache in
each level. The operations
are READ and READ-
SAVE from Cachei to
Cachei−1, and DEMOTE
from Cachei−1 to Cachei.

Cache 1

Cache 2

Cachen

Disk
Array

Client

READ

READ−SAVE
DEMOTE

2 Model Definition

As shown in Figure 1, our model consists of one client, n
cache levels, Cache1,. . . ,Cachen, and one storage level,
Disk, arranged in a linear hierarchy. we refer to more
complicated hierarchies in Section 8. Cachei is of size
Si, and access cost Ci. The cost of a disk access is
CDisk. The cost of demoting a block from Cachei−1

to Cachei is Di. We assume that a lower cache level
carries an increased access cost, and that demoting and
access costs are equal for a given level. Namely,
C1 = D1 < C2 = D2 < . . . < Cn = Dn < CDisk.

Typically, Cache1 resides in the client’s memory and
Cachen resides on the storage controller. Additional
cache levels may reside in either of these locations, as
well as additional locations in the network. The access
costs, Ci and Di, represent a combination of computa-
tion, network, and queuing delays. CDisk also includes
seek times.

The model is demand paging, read-only (for the pur-
pose of this work, we assume a separately managed write
cache [18]), and defines three operations:

• READ (x, i)—move block x from cachei+1 to
cachei, removing it from cachei+1. If x is not
found in cachei+1, READ(x, i+1) is performed re-
cursively, stopping at Disk if the block is not found
earlier.

• READ-SAVE (x, i)—copy block x from cachei+1

to cachei. Keep block x in cachei+1 only if its
range is allocated space in cachei+1. If x is not
in cachei+1, READ-SAVE(x, i + 1) is performed
recursively, stopping at the Disk if the block is not
found earlier.

• DEMOTE (x, i)—move block x from cachei to
cachei+1, removing it from cachei.

The weighted I/O cost of a policy on a trace is the sum
of costs of all READ, READ-SAVE and DEMOTE op-
erations it performs on that trace.

3 Marginal Gain

The optimal offline replacement policy for a single cache
is Belady’s MIN [9]. Whenever a block needs to be
evicted from the cache, MIN evicts the one with the
largest forward distance – the number of distinct blocks
that will be accessed before this block is accessed again.
To develop our online multilevel algorithm, we have
opted to use application hints in a way which best ap-
proximates this forward distance. To this end, we use the
notion of marginal gains, which was defined in previous
work [36].

The marginal gain for an access trace is the increase
in hit rate that will be seen by this trace if the cache size
increases by a single block:

MG(m) = Hit(m) − Hit(m − 1),
where Hit(m) is the expected hit rate for a cache of size
m. Below we show how MG(m) is computed for three
common access patterns: looping, sequential, and ran-
dom. Although we focus on these three patterns, similar
considerations can be used to compute the marginal gain
of any other access pattern for which the hit rate can be
estimated [14, 27, 37, 38].

Obviously, the marginal gain depends on the replace-
ment policy of the cache. We assume that the best re-
placement policy is used for each access pattern: MRU
(Most Recently Used) is known to be optimal for sequen-
tial and looping references, whereas LRU is usually em-
ployed for random references (for which all policies per-
form similarly [10, 13, 14, 15, 27, 41]).

Sequential accesses. For any cache size m, since no
block is previously referenced, the hit rate for a sequen-
tial access trace is Hitseq(m) = 0. Thus, the resulting
marginal gain is 0 as well.

Random (uniform) accesses. For an access trace
of R blocks of uniform distribution, the probability of
accessing each block is 1/R [36]. For any cache size
m ≤ R, the hit rate is thus Hitrand(m) = m/R. The
resulting marginal gain is:

MGrand(m) =

{
m/R − (m − 1)/R = 1/R m ≤ R

0 m > R.

Looping accesses. The loop length of a looping ref-
erence is the number of blocks being re-referenced [27].
For a looping reference with loop length L, the expected
hit rate for a cache of size m managed by MRU is
Hitloop(m) = min(L,m)/L. Thus,

MGloop(m) =

{
m/L − (m − 1)/L = 1/L m ≤ L

L/L − L/L = 0 m > L.

In other words, the marginal gain is constant up to
the point where the entire loop fits in the cache and from
there on, the marginal gain is zero.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 171

We deal with traces where accesses to blocks of sev-
eral ranges are interleaved, possibly with different access
patterns. Each range of blocks is accessed with one pat-
tern. In order to compare the marginal gain of references
to different ranges, we use the frequency of access to
each range. Let Fi be the percent of all accesses which
address range i. Define the normalized expected hit rate
for range i as Hiti(m)×Fi, and the normalized marginal
gain for range i as NMGi(m) = MGi(m) × Fi.

Although marginal gains are defined for a single level
cache and measure hit rate rather than weighted I/O cost,
normalized marginal gains induce an order of priority on
all ranges – and thus on all blocks – in a trace. This or-
der is used by our online management algorithm, Karma,
to arrange the blocks in a multilevel cache system: the
higher the range priority, the higher its blocks are placed
in the cache hierarchy. This strategy maximizes the to-
tal normalized marginal gain of all blocks stored in the
cache.

Note that when all blocks in a range have the same
access frequency there is a correlation between the nor-
malized marginal gain of a range and the probability that
a block of this range will be accessed. A higher marginal
gain indicates a higher probability. Therefore, there is
no benefit in keeping blocks of ranges with low marginal
gains in the cache: the probability that they will be ac-
cessed is small. Ranges with several access frequencies
should be divided into smaller ranges according to those
frequencies (see the example in Figure 2, described in
Section 4).

A major advantage of basing caching decisions on
marginal gains is the low level of detail required for their
computation. Since only the general access pattern and
access frequency are required, it is much more likely that
an application be able to supply such information. Our
experience shows that databases can supply this informa-
tion with a high degree of accuracy. We expect our hints
can also be derived from information available to the file
system [16, 26].

4 Karma

Karma calculates the normalized marginal gain of a
range of blocks (which corresponds to each of the sets
described in Section 1) of blocks and then uses it to
indicate the likelihood that the range’s blocks will be
accessed in the near future. To calculate the normal-
ized marginal gain, Karma requires that all accessed disk
blocks be classified into ranges. The following informa-
tion must be provided (by means of application hints) for
each range: an identifier for the range, its access pattern,
the number of blocks in the range, and the frequency of
access to this range. The computation is described in
Section 3. Each block access is tagged with the block’s

range identifier, enabling all cache levels to handle the
block according to its range.

Karma allocates for each range a fixed cache partition
in a way that maximizes the normalized marginal gain
of the blocks in all cache levels. It places ranges with
higher normalized marginal gain in higher cache levels,
where the access cost is lower. More precisely: space
is allocated in Cachei for the ranges with the highest
normalized marginal gain that were not allocated space
in any Cachej , j < i. For each level i there can be at
most one range which is split and is allocated space in
both level i and the adjacent lower level i + 1. Figure 2
shows an example of Karma’s allocation.

Each range is managed separately, with the replace-
ment policy best suited for its access pattern. When a
block is brought into the cache, a block from the same
range is discarded, according to the range’s policy. This
maintains the fixed allocation assigned to each range.

The amount of cache space required for maintaining
the information about the ranges and the data structures
for the cache partitions is less than one cache block. The
pseudocode for Karma appears in Figure 3.

Hints. Karma strongly depends on the ability to prop-
agate application information to the lower cache levels.
Specifically, the range identifier attached to each block
access is crucial for associating the block with the knowl-
edge about its range. A method for passing information
(sufficient for Karma) from the file system to the I/O sys-
tem was suggested [8] and implemented in a Linux 2.4.2
kernel prototype.

For the two tables joined in the example in Figure 2,
Karma will be supplied with the partitioning of the
blocks into tables and index tree levels, as in Figure 2(c).
Additionally, each cache level must know the aggregate
size of all cache levels above it. Such information can
be passed out-of-band, without changing current I/O in-
terfaces. Each block access will be tagged with its range
identifier, enabling all cache levels to classify it into the
correct partition.

As in all informed management policies, Karma’s per-
formance depends on the quality of the hints. How-
ever, thanks to its exclusive caching, even with imperfect
hints Karma will likely outperform basic LRU at each
level. For example, with no hints provided and the entire
data set managed as one partition with LRU replacement,
Karma essentially behaves like Demote [49].

Allocation. Allocating cache space to blocks accord-
ing to their normalized marginal gain would result in zero
allocation for sequential accesses. Yet, in such patterns
the application often accesses one block repeatedly be-
fore moving on to the next block. In some database
queries, for example, a block may be accessed a few
times, until all tuples in it have been processed. There-
fore, ranges accessed sequentially are each allocated a

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association172

R R R RR

Table
2

S SS
Table

1L L

L

(a) Joined tables (b) Resulting access trace

1

2

3

4

Range Loop 1 25%

Range Loop 2 25%

Pattern Size Frequency

Range Seq |Table | 25%
1

Range Rand |Table |−3 25%2

(c) Hints provided to Karma

S L L R

R R R R R
Cache1

Cache2

L

(d) Cache content with Karma
Figure 2: Karma’s allocation of buffers to ranges in two cache levels. The application is a database query. (a) Two database tables
are joined by scanning one of them sequentially and accessing the second one via an index. (b) The resulting access pattern is an
interleaving of four ranges: one sequential (S), two loops (L), and one random (R). (c) This partitioning into ranges is supplied to
Karma at the beginning of query execution. (d) Karma allocates one buffer for the sequential accesses (see text), three to hold the
root and inner nodes of the index, and the remaining space to the randomly accessed blocks.

single block in the upper level cache (if prefetching is
added to the model, several blocks may be allocated to
allow for sequential read-ahead).

We allow for locality within the currently accessed
block by always bringing it into Cache1. When this
block belongs to a range with no allocated space in
Cache1, we avoid unnecessary overhead by reading it
using READ-SAVE, and discarding it without using DE-
MOTE.

Lazy repartitioning. When Karma is supplied with
a new set of hints which indicate that the access patterns
are about to change (e.g., when a new query is about to be
processed), it repartitions all cache levels. Cache blocks
in each level are assigned to the new partitions. As a re-
sult, disk blocks which do not belong to any of the new
partitions in the cache level where they are stored be-
come candidates for immediate eviction.

A block is rarely assigned a new range. For example,
in a database blocks are divided according to their table
or index level. Therefore, when a new query is processed
the division into ranges will remain the same; only the
access frequency and possibly the access pattern of the
ranges will change. As a result, the blocks will remain in
the same partition, and only the space allocated for this
partition will change. This means that the sizes of the
partitions will have to be adjusted, as described below.

Karma never discards blocks while the cache is not
full, nor when the cache contains blocks which are im-
mediate candidates for eviction (blocks from old ranges
or blocks that were READ by an upper level). Karma en-
sures that even in transitional phases (between the time a
new set of hints is supplied and the time when the cache
content matches the new partitioning) the cache keeps
the blocks with the highest marginal gain. As long as a
cache (at any level) is not full, non-sequential ranges are
allowed to exceed the size allocated for them. When no
space is left and blocks from ranges with higher marginal
gain are accessed, blocks from ranges which exceeded
their allocated space are first candidates for eviction, in
reverse order of their marginal gain.

Note that during repartitioning the cache blocks are
not actually moved in the cache, as the partitioning is

logical, not physical. The importance of handling this
transitional stage is that it makes Karma less vulnerable
to the order in which, for example, several queries are
processed in a row.

Replacement. Karma achieves exclusive caching by
partitioning the cache. This partitioning is maintained by
use of DEMOTE and READ-SAVE, where each cache
level stores only blocks belonging to its assigned ranges.
For each i, 1 ≤ i ≤ n − 1, Cachei demotes all
evicted blocks which do not belong to sequential ranges.
When Cachei is about to read a block without storing
it for future use, it uses READ-SAVE in order to pre-
vent Cachei+1 from discarding the block. Only one such
block is duplicated between every two cache levels at any
moment (see Figure 3). For each j, 2 ≤ j ≤ n, Cachej

does not store any READ blocks, but only those demoted
by Cachej−1 or read using READ-SAVE.

Special attention must be given to replacement in
ranges which are split between adjacent cache levels i
and i + 1. The LRU (or MRU) stack must be preserved
across cache levels. Cachei manages the blocks in a split
range with the corresponding policy, demoting all dis-
carded blocks. Cachei+1 inserts demoted blocks at the
most recently used (MRU) position in the stack and re-
moves them from the MRU or LRU position, according
to the range’s policy. Blocks READ by Cachei are re-
moved from the stack and become immediate candidates
for eviction. This way, the stack in Cachei+1 acts as an
extension of the stack in Cachei.

5 Experimental Testbed

While Karma is designed to work in n levels of cache, in
our experiments we compare it to existing algorithms on
a testbed consisting of two cache levels (n = 2).

5.1 PostgreSQL Database

We chose PostgreSQL [34] as a source of application
hints. Each of its data files (table or index) is divided
into disk blocks. Accesses to these blocks were traced

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 173

Partition (Block X)
Return the partition to which X belongs

Transition (Block X)
Return (cache is not full) or (LowestPriority(X) < Partition(X))

LowestPriority(Block X)
Return partition with lowest priority exceeding its allocated size.
If none exists return Partition(X).

Evict(Block X)
If (X was in Reserved) or (Partition(X) is Seq)

Discard X
Else

DEMOTE X
Discard X

Insert (Block X , Partition P)
If (cache is not full)

Put X in P
Else

Remove block Z from LowestPriority(X)
Evict (Z)
Put X in P

Hit (Block X , Action A)
If (first level) or (A = DEMOTE/READ-SAVE)

update place in stack
Else // low level and A = READ

Put X in ReadBlocks

Miss (Block X , Action A)
If (low level) and (A = READ)

READ X
Discard X

Else // (first level) or (A = DEMOTE/READ-SAVE)
If (Partition(X) fits in the cache) or (cache is not full)

If (A 6= DEMOTE)
READ X

Insert (X ,Partition(X))
Else // Partition(X) doesn’t fit at all

If (first level) // (A 6= DEMOTE)
READ-SAVE X
Remove block Y from Reserved
If (Transition(Y))

Insert (Y , Partition(Y))
Else

Discard Y
Put X in Reserved

Else // low level
If (Transition(X))

If (A 6= DEMOTE)
READ X

Insert (X ,Partition(X))
Else // no space for X

If (A 6= DEMOTE)
READ-SAVE X

Discard X

Figure 3: Pseudocode for Karma. Reserved—A reserved buffer of size 1 in the first cache level for blocks belonging to ranges with
low priority. ReadBlocks—A low priority partition holding blocks that were READ by an upper level cache and are candidates for
eviction. READ, READ-SAVE, DEMOTE—The operations defined by the model in Section 2.

by adding trace lines to the existing debugging mecha-
nism.

Like most database implementations, PostgreSQL in-
cludes an explain mechanism, revealing to the user the
plan being executed for an SQL query. This execution
plan determines the pattern and frequency with which
each table or index file will be accessed during query ex-
ecution. We used the output of explain to supply Karma
with the characterization of the access pattern for each
range, along with a division of all the blocks into ranges.
Blocks are first divided by their table, and in some cases,
a table can be sub-divided into several ranges. For exam-
ple, in B-tree indices each level of the tree is character-
ized by different parameters (as in Figure 2).

5.2 TPC Benchmark H Traces
The TPC Benchmark H (TPC-H) is a decision support
benchmark defined by the Transaction Processing Coun-
cil. It exemplifies systems that examine large volumes
of data and execute queries with a high degree of com-
plexity [2]. In our experiments we used the default im-
plementation provided in the benchmark specification to
generate both the raw data and the queries.

We simulated our cache replacement policies on two
types of traces:

• Repeated queries: each query is repeated sev-
eral times, requesting different values in each run.

This trace type models applications that access the
database repeatedly for the same purpose, request-
ing different data in different iterations.

• Query sets: each query set is a permutation of the
22 queries of the benchmark, executed serially [2].
The permutations are defined in Appendix A of the
benchmark specification. The query sets represent
applications that collect various types of data from
the database.

Queries 17, 19, 20, 21 and 22 have especially long
execution traces (each over 25,000,000 I/Os). As these
traces consist of dozens of loop repetitions, we used for
our simulation only the first 2,000,000 I/Os of each trace.

5.3 Synthetic Zipf Workload
In traces with Zipf distribution, the frequency of access
to block i is proportional to 1/iα, for α close to 1. Such
distribution approximates common access patterns, such
as file references in Web servers. Following previous
studies [37, 49], we chose Zipf as a non-trivial random
workload, where each block is accessed at a different, yet
predictable frequency. We use settings similar to those
used in previous work [49] and set α = 1, for 25,000
different blocks.

Karma does not require information about the access
frequency of each block. We supplied it with a parti-

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association174

Alg Basic-Alg Double-Alg Global-Alg
LRU Basic-LRU Double-LRU Demote

(LRU+LRU)
2Q Basic-2Q Double-2Q Global-2Q

(LRU+2Q)
ARC Basic-ARC Double-ARC Global-ARC

(LRU+ARC)
MultiQ Basic-MultiQ Double-MultiQ Global-MultiQ

(LRU+MultiQ)
LRU-SP Basic-LRU-SP N/A (SP-Karma)

(LRU-SP+LRU)

Table 1: The policies in our comparative framework. In ad-
dition to the policies known from the literature, we defined the
Double and Global extensions indicated in bold. We compared
Karma to all applicable Basic and Double policies, as well as
to Demote and to Global-MultiQ.

tioning of the blocks into several ranges and the access
frequency of each range. This frequency can be easily
computed when the distribution parameters are available.

Although the blocks in each range have different ac-
cess frequencies, for any two blocks i and j, if i < j then
the frequency of access to block i is greater then that of
block j. The blocks are assigned to ranges in increasing
order, and so for any two ranges I and J , if I < J then
all the blocks in range I have greater access frequencies
than the blocks in range J .

5.4 Comparative framework
We compared Karma to five existing replacement algo-
rithms: LRU, 2Q, ARC, MultiQ, and LRU-SP, each of
which we examined using three different approaches:
Basic, Double, and Global. In the Basic approach, each
algorithm is used in conjunction with LRU, where the
existing algorithm is used on one level and LRU on the
other, as was defined in the respective literature. In the
Double approach, each is used on both cache levels. The
third approach is a global management policy, where
each algorithm must be explicitly adapted to use DE-
MOTE.

Although Global-2Q and Global-ARC were not ac-
tually implemented in our experiments, we describe,
in what follows, how they would work in a multilevel
cache. It is also important to note that Global-MultiQ
is not an existing policy: we defined this algorithm for
the purpose of extending the discussion, and it is imple-
mented here for the first time. We refer to the special
case of LRU-SP in Section 5.5. The algorithms and ap-
proaches are summarized in Table 1. The actual experi-
mental results are described in Section 6.

Least Recently Used (LRU). LRU is the most com-
monly used cache management policy. Basic-LRU and
Double-LRU are equivalent, using LRU on both cache
levels. Global-LRU is the Demote policy [49], where
the upper level cache demotes all blocks it discards. The
lower level cache puts blocks it has sent to the upper level

at the head (closest to being discarded end) of its LRU
queue, and puts demoted blocks at the tail.

2Q. 2Q [25] uses three queues. One LRU queue, Am,
holds “hot” pages that are likely to be re-referenced. A
second FIFO queue, Ain, holds “cold” pages that are
seen only once. The third LRU queue, Aout, is a ghost
cache, holding meta-data of blocks recently evicted from
the cache. As 2Q was originally designed for a second
level cache, Basic-2Q uses LRU at the first cache level
and 2Q at the second. Double-2Q uses 2Q at both cache
levels. Global-2Q keeps Aout and Ain in the second
level cache, dividing Am between both cache levels. In
all these cases, we use the optimal parameters for each
cache level [25]. Ain holds 25% of the cache size and
Aout holds blocks that would fit in 50% of the cache.

ARC. ARC [33] was also designed for a second level
cache. It divides blocks between two LRU queues, L1

and L2. L1 holds blocks requested exactly once. L2

holds blocks requested more than once. The bottom
(LRU) part of each queue is a ghost cache. The percent-
age of cache space allocated to each queue is dynami-
cally adjusted, and history is saved for as many blocks
that would fit in twice the cache size. Basic-ARC uses
LRU at the first cache level and ARC at the second.
Double-ARC uses ARC at both cache levels. Global-
ARC keeps the ghost caches in the second level cache,
as well as the LRU part of what is left of L1 and L2.
ARC is implemented for each cache level with dynamic
adjustment of the queue sizes [33].

MultiQ. MultiQ [51] was originally designed for a
second level cache. It uses multiple LRU queues, each
having a longer lifetime than the previous one. When a
block in a queue is accessed frequently, it is promoted to
the next higher queue. On a cache miss, the head of the
lowest non-empty queue is evicted. Basic-MultiQ uses
LRU at the first cache level and MultiQ at the second.
Double-MultiQ uses MultiQ at both cache levels. We
implemented MultiQ for each cache level with 8 queues
and a ghost cache. The Lifetime parameter is set ac-
cording to the observed temporal distance. We extended
MultiQ to Global-MultiQ in a straightforward way. The
ghost cache is allocated in the second level cache, and
the queues are divided dynamically between the cache
levels, with at most one queue split between the levels.
Whenever a block is brought into the first level cache,
the block at the bottom of the lowest queue in this level
is demoted to the second level cache.

5.5 Application Controlled File Caching

In LRU-SP [10], applications may use specific interface
functions to assign priorities to files (or ranges in files).
They may also specify cache replacement policies for
each priority level. Blocks with the lowest priority are

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 175

first candidates for eviction. In the original paper, appli-
cations were modified to include calls to these interface
functions.

As a policy assuming hints from the application, LRU-
SP is designed for a first level cache. Therefore, we
implement Basic-LRU-SP with LRU at the second level.
Double-LRU-SP would let the application manage each
cache level directly yet independently. This seems un-
reasonable and thus we did not implement this exten-
sion. Without hints available at the second level cache,
the simple addition of DEMOTE will not result in global
management, since informed decisions cannot be made
in the second level. Thus, extending LRU-SP to Global-
LRU-SP is not applicable.

A new multilevel extension. To evaluate the contri-
bution of the different mechanisms of Karma, we de-
fined a new policy, SP-Karma, for managing multilevel
caches, which added to LRU-SP most of the features we
defined in Karma. This extension resulted in a new cache
management algorithm which is similar to Karma and
allows us to better understand the value of specific at-
tributes of Karma. In particular, we added DEMOTE for
cooperation between cache levels, we derived priorities
using Karma’s calculation of normalized marginal gains
(this mechanism was also used to supply hints to Basic-
LRU-SP above), and we supplied these priorities to both
cache levels. Since SP-Karma now bases its decisions on
Karma’s priorities, the significant difference between our
two policies is the use of READ-SAVE.

The results of SP-Karma resembled those of Karma,
but Karma achieved better performance on all traces. The
use of READ-SAVE resulted in Karma executing fewer
DEMOTE operations, thus outperforming SP-Karma by
up to 1% in the large caches and 5% in the small ones.
Since we defined our new policy, SP-Karma, to be very
similar to Karma and since it shows similar results, in
Section 6 we compare only Karma to the existing poli-
cies.

6 Results

We simulated the policies described in Section 5.4 on
a series of increasing cache sizes and measured the
weighted I/O cost:

Weighted I/O cost = C2×(misses in Cache1)
+ D2×(DEMOTEs to Cache2)
+ CDisk×(misses in Cache2)

For all experiments (excluding the one depicted in Fig-
ure 9), we set C2 = D2 = 1 and CDisk = 20, as in [49].
For all experiments, excluding the one depicted in Fig-
ure 10, we assume, as in previous studies [11, 49], that

0%

20%

40%

60%

80%

100%

120%

1/16 1/8 1/4 1/2 3/4 1... ...2

I/O
co

st
co

m
pa

re
d

to
LR

U

Aggregate cache size (compared to size of data set)

15.97%

52.57%

1 run
2 runs
4 runs
6 runs
8 runs

Figure 4: Karma’s improvement over LRU on Query 3 run
multiple times.

the caches are of equal size (S1 = S2). The cache size in
the graphs refers to the aggregate cache size as a fraction
of the size of the data set. Thus, a cache size of 1 means
that each cache level is big enough to hold one-half of
the data set. A cache size of 2 means that the entire data
set fits in the top level, and all policies should perform
equally.

The results are normalized to their weighted I/O cost
compared to that incurred by LRU. This gives a better
representation of the improvement over the default LRU
management, making it easier to compare the policies.

How does Karma compare to Basic-LRU? We ran
all policies on traces of each query, using several cache
sizes. Karma generally yielded similar curves for all
queries. In Figure 4 we take a close look at Query 3
as a representative example, in order to understand the
behavior of Karma with different cache sizes. Query 3 is
sequential, scanning 3 tables. PostgreSQL creates a hash
table for each database table and joins them in memory.
Subsequent runs of Query 3 result in a looping reference.

We ran Query 3 eight times, to show how the I/O cost
incurred by Karma decreases, in comparison to that of
LRU, as the number of runs increases. LRU suffers from
the three problems of multilevel caching. The second
level cache experiences no locality of reference, as all re-
peated accesses are hidden by the first level. Even when
the aggregate cache is as large as the data set LRU does
not exploit the entire space available due to redundancy
between levels. Finally, when the cache is smaller than
the data set LRU is unable to maintain used blocks until
the next time they are accessed, and so it does not ben-
efit from increasing the cache until its size reaches the
size of the data set. Karma does not suffer any of those
drawbacks, and its weighted I/O cost decreases signif-
icantly as the cache size increases. Although the por-
tion of the loop which fits in the cache is equal for all
runs (for each cache size), the hit rate of LRU remains
zero, while Karma’s hit rate increases in both cache lev-

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association176

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

1/16 1/8 1/4 1/2 3/4 1... ...2... ...4

I/
O

co
st

co
m

pa
re

d
to

L
R

U

Aggregate cache size (compared to size of data set)

Basic-LRU, Basic-ARC, Basic-MultiQ, Basic-2Q
Double-ARC, Double-MultiQ

Double-2Q
Global-LRU (Demote)

Global-MultiQ
Basic-LRU-SP

Karma

Figure 5: Weighted I/O cost for all policies on Query 3 run
twice. Policies with identical results are plotted using a single
line. Other than Karma, only the Global policies are able to fit
the entire data set in the cache when the aggregate cache size
equals the size of the data set. Unlike the non-informed poli-
cies, Karma and Basic-LRU-SP reduce their I/O cost gradually
as the cache size increases.

els. This causes an increasing improvement in Karma’s
weighted I/O cost compared to that of LRU.

How does Karma compare to single level non-
informed policies? Figure 5 contains the results for all
policies on Query 3. The Basic implementations of 2Q,
MultiQ, and ARC behave like LRU. Their division into
separate LRU queues does not help in identifying the
looping reference if it is larger than the cache size. When
the cache size increases to the point where the entire loop
fits in the cache, there can be no improvement over LRU.

The Double extensions of 2Q, MultiQ, and ARC al-
locate a ghost cache (whose size is 0.22%, 0.16% and
0.43% of the cache size, respectively) in both cache lev-
els. This small portion is sufficient to prevent the data set
from fitting in one level when the cache size is 2, leading
to worse performance than LRU.

Karma is informed of the looping reference and man-
ages it with MRU replacement. This enables Karma to
benefit from every increase in the cache size. When
the entire loop fits in the aggregate cache Karma bene-
fits from its exclusive caching and shows the largest im-
provement over the I/O cost of LRU. We refer to the other
global and informed policies later in this section.

The results for the other queries are similar to those
for Query 3. Figure 6 summarizes the results for multi-
ple runs of each query, comparing the weighted I/O cost
of Karma to three representative policies. Each query
was executed four times, with different (randomly gen-
erated) parameters. The traces are a concatenation of one

to four of those runs, and the results are for an aggregate
cache size which can contain the entire data set. Most of
the queries were primarily sequential, causing all poli-
cies to perform like LRU for a single run. Repeated runs,
however, convert the sequential access into a looping ac-
cess, which is handled poorly by LRU when the loop is
larger than the cache. These experiments demonstrate
the advantage of policies which are not based purely on
recency.

The queries were of four basic types, and the results
are averaged for each query type. The first type in-
cludes queries which consist only of sequential table
scans. Karma’s I/O cost was lower than that of LRU and
LRU-based policies on these queries by an average of
73% on four runs (Figure 6(a)). In the second type, an
index is used for a table scan. Indices in PostgreSQL are
constructed as B-trees. An index scan results in some
locality of reference, improving LRU’s performance on
query traces of this type, compared to its performance on
queries with no index scans. Karma’s I/O cost on these
queries was lower than that of LRU by an average of 64%
on four runs (Figure 6(b)). In the third query type, one
or more tables are scanned several times, resulting in a
looping pattern within a single execution of the query. In
queries of this type, I/O cost lower than that of LRU is
obtained by some policies even for one run of the query.
Four runs of each of these queries consisted of eight runs
of the loop, resulting in significant reduction in I/O cost
as compared to the other query types. Karma’s I/O cost
on these queries was lower than that of LRU by an aver-
age of 78.33% on four runs (Figure 6(c)). In the last type,
each query instance included dozens of iterations over
a single table. These traces were trimmed to the first
2,000,000 I/Os, which still contained more than ten loop
iterations. On a single run of these queries Karma per-
formed better than LRU by an average of 90.25% (Fig-
ure 6(d)).

The results in Figure 6 for Basic-ARC correspond to
those in Figure 5. Like the rest of the LRU-based policies
constructed for a single cache level, it is not exclusive,
and thus it is unable to exploit the increase in cache size
and fit the data set in the aggregate cache.

To see how the different policies perform on more het-
erogeneous traces, we use the query sets described in
Section 5.2, which are permutations of all queries in the
benchmark. Our results for the first 20 sets are shown in
Figure 7 for the largest cache sizes, where the policies
showed the most improvement. The left- and right-hand
columns show results for an aggregate cache size that can
hold half of the data set or all of it, respectively.

The I/O cost of Basic-ARC and Double-ARC is not
much lower than that of LRU. ARC is designed to handle
traces where most of the accesses are random or exhibit
locality of reference. Its dynamic adjustment is aimed at

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 177

0%

20%

40%

60%

80%

100%

1 2 4

I/
O

co
st

co
m

pa
re

d
to

L
R

U

Runs

0

1.7

1.9

0 0 01

0.5

0.2

0

4.9

2.4

(a) No Index (1,3,6,10,14)

0%

20%

40%

60%

80%

100%

1 2 4
Runs

0.4

7.4

9.1

0 0 0
0.7

6.7

7.3

0

9.8

10.1

(b) Index Scan (2,4,5,7,8,9,12,13,16,21)

0%

20%

40%

60%

80%

100%

1 2 4
Runs

5

9.3

11.5

0 0 0

4

29.5
42.2

3.8

20

28.6

(c) Two Loops (11,15,18)

0%

20%

40%

60%

80%

100%

1
Runs

0

2.2
2.4

2.4

Basic-ARC
Demote

Basic-LRU-SP
Karma

(d) Many Loops (17,19,20,22)

Figure 6: Improvement in I/O cost of Karma, Basic-ARC, Demote and Basic-LRU-SP compared to LRU, on repeated runs of all
queries. The columns show the average I/O cost of these policies for each query type, when the aggregate cache size equals the size
of the data set. Each column is tagged with the standard deviation for this query type. Karma improved over the I/O cost of LRU
on repeated runs of the queries by an average of 73%, 64%, 78% and 90% on query types a, b, c, and d, respectively.

preventing looping and sequential references from pol-
luting the cache. It is not designed to handle traces where
larger segments of the trace are looping or sequential.

The I/O cost of Basic-2Q and Basic-MultiQ is lower
than that of LRU for the larger aggregate cache. Both
policies benefit from dividing blocks into multiple
queues according to access frequency. Double-2Q out-
performs Basic-2Q by extending this division to both
cache levels. Double-MultiQ, however, suffers when the
ghost cache is increased in two cache levels and does not
show average improvement over Basic-MultiQ. The high
standard deviation of the Basic and Double extensions of
2Q and MultiQ demonstrate their sensitivity to the order
of the queries in a query set, and consequently, their poor
handling of transitional stages.

Karma outperforms all these policies. Its reduction
in I/O cost is significantly better than that of the non-
informed single level policies. This reduction is evident
not only when the entire data set fits in the cache, but in
smaller cache sizes as well. The low standard deviation
shows that it copes well with changing access patterns
resulting in transitional stages.

Figure 8 shows how Karma compares to existing poli-
cies on a Zipf workload. We chose to present the results
for Double-ARC because it showed better performance
than all non-informed policies that were designed for a
single cache level. This is because ARC avoids caching
of blocks that are accessed only once in a short period of
time. In a Zipf workload, these are also the blocks which
are least likely to be accessed again in the near future.
Note that ARC’s improvement is most evident when the
cache is small. When the cache is larger, such blocks oc-
cupy only a small portion of the cache in LRU, and so
the benefit of ARC is less distinct.

Karma improves over the I/O cost of LRU by as much
as 41%, adding as much as 25% to the improvement of

0%

20%

40%

60%

80%

100%

120%

B
as

ic
-A

R
C

D
ou

bl
e-

A
R

C

B
as

ic
-2

Q

B
as

ic
-

M
ul

tiQ

D
ou

bl
e-

M
ul

tiQ

D
ou

bl
e-

2Q

B
as

ic
-

LR
U

-S
P

G
lo

ba
l-L

R
U

(D
em

ot
e)

G
lo

ba
l-

M
ul

tiQ

K
ar

m
a

I/
O

co
st

co
m

pa
re

d
to

L
R

U

Policy

1.78 2.5

3.78

4.5 5.88

5.64

2.44

0.32 0.61
0.62

1.1

3.53

1.81 0.67 0.74 2

1.77

1.37

0.42

2.11

Figure 7: Weighted I/O cost of Karma and the existing poli-
cies on 20 query sets, as compared to LRU. The columns show
the weighted I/O cost for each policy averaged over 20 query
sets for each of two cache sizes. The left bar for each policy
is for an aggregate cache size of 1/2 and the right one is for 1.
Each column is tagged with the standard deviation for this pol-
icy.The policies are sorted in descending order of their I/O cost
for the large cache size. Karma shows improvement over all
cache sizes by combining knowledge of the access pattern with
exclusive caching. It improves the I/O cost of LRU by 47% and
85% for the small and big cache sizes, respectively.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association178

0%

20%

40%

60%

80%

100%

120%

1/16 1/8 1/4 1/2 3/4 1... ...2

I/
O

co
st

co
m

pa
re

d
to

L
R

U

Aggregate cache size (compared to size of data set)

Basic-LRU
Double-ARC

Global-LRU (Demote), Global-MultiQ
Basic-LRU-SP

Karma

Figure 8: Weighted I/O cost for selected policies on a Zipf
workload. Even when the access pattern exhibits strong tem-
poral locality, Karma outperforms all LRU-based policies and
the basic hint-based policy. Karma improves over the I/O cost
of LRU by at least 26%, and by as much as 41%.

Double-ARC. Since the access frequency of the blocks
is available to Karma, it does not bring into the cache
blocks with low frequency. Exclusiveness further in-
creases its effective cache size, resulting in improved per-
formance.

How does Karma compare to global non-informed
policies? When run on Query 3, Demote (Global-LRU)
(Figure 5) exhibits different behavior than the single level
policies. It manages to reduce the I/O cost significantly
when the entire data set fits in the aggregate cache. This
is the result of the exclusive caching achieved by using
DEMOTE. Still, for smaller cache sizes, it is not able to
“catch” the looping reference and does not benefit from
an increase in cache size. Instead, its overhead from fu-
tile DEMOTE operations means that its performance is
worse than LRU’s for all cache sizes in which the ag-
gregate cache cannot contain all the blocks. We expected
Global-MultiQ to perform at least as well as Demote, but
due to its large ghost cache it is unable to fit the entire
data set into the aggregate cache, even when the cache is
large enough. Instead, it only suffers the overhead of fu-
tile DEMOTE operations. Being a global policy, Karma
is able to exploit the entire aggregate cache. Since it
manages the looping accesses with MRU replacement,
it improves gradually as the cache size increases.

Figure 6 shows only the results for the largest cache
size, where Demote shows its best improvement. In fact,
we expect any global policy to achieve this improve-
ment when the entire data set fits in the aggregate cache.
Even there, Karma achieves lower I/O cost than Demote,
thanks to its use of READ-SAVE and MRU management
for loops. Unlike Demote, Karma achieves this reduction
in smaller cache sizes as well.

The performance of the global policies on the query
sets is represented well in Figure 7. It is clear that when
the cache size is smaller than the data set, they are not

able to improve the I/O cost of LRU significantly. This
improvement is only achieved when the entire data set
fits in the aggregate cache (represented by the right-hand
column). Karma, however, improves gradually as the
cache size increases. Combining exclusive management
with application hints enables it to maximize the cache
performance in all cache sizes.

When the access pattern does not include looping ref-
erences (Figure 8), the global policies improve gradually
as the cache size increases. Although a Zipf workload
exhibits significant locality of reference, adding exclu-
siveness to LRU does not achieve good enough results.
In the smallest cache size Demote and Global-MultiQ
improve over the I/O cost of LRU by 10%. Karma, with
its knowledge of access frequencies, achieves additional
improvement of 26%.

How does Karma compare to hint-based policies?
Basic-LRU-SP using Karma’s hints and priorities per-
forms better than any non-informed single level policy,
for all our traces. Using hints enables it to optimize
its use of the upper level cache. When the access pat-
tern is looping, the combination of MRU management
in the upper cache and default LRU in the lower re-
sults in exclusive caching without the use of DEMOTE.
Note the surprising effect on the queries with many loops
(Figure 6(d)), where Basic-LRU-SP outperforms Karma
when the entire data set fits in the aggregate cache.
Karma pays for the use of DEMOTE, while Basic-LRU-
SP enjoys “free” exclusive caching, along with the ac-
curate priorities generated by Karma. The average I/O
cost of Basic-LRU-SP is 92.5% lower than that of LRU.
Karma’s average I/O cost is 90.25% lower than that of
LRU. When the aggregate cache is smaller than the data
set, or when the pattern is not a pure loop (Figures 5, 6(a-
c), 7, and 8), Karma makes optimal use of both caches
and outperforms Basic-LRU-SP significantly.

How is Karma affected by the model parameters?
We wanted to estimate Karma’s sensitivity to varying ac-
cess costs in different storage levels. Figure 9 shows how
Karma behaves on query set 1 (the behavior is similar for
all traces) when the disk access delay ranges from 10 to
100 times the delay of a READ from the second level
cache (or a DEMOTE to that cache). When the delay
for a disk access is larger, the “penalty” for DEMOTE is
less significant compared to the decrease in the number
of disk accesses. When DEMOTE is only ten times faster
than a disk access, its added cost outweighs its benefits
in very small caches.

How is Karma affected by the cache size at each
level? Figure 10 compares the behavior of Karma to
other policies on cache hierarchies with varying lower-
level sizes. The details are numerous and so we
present here only results for the best LRU-based poli-
cies, Double-2Q and Global-Multi-Q. Global-Multi-Q

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 179

0%

20%

40%

60%

80%

100%

120%

1/16 1/8 1/4 1/2 3/4 1... ...2

I/O
co

st
co

m
pa

re
d

to
LR

U

Aggregate cache size (compared to size of data set)

Basic-LRU
Karma (disk access = 10X read)
Karma (disk access = 20X read)
Karma (disk access = 50X read)

Karma (disk access = 100X read)

Figure 9: Karma’s I/O cost compared to that of LRU for dif-
ferent disk access delays, for query set 1. When delays for a
disk access are longer, there is more benefit in using DEMOTE,
despite its additional cost.

performs futile DEMOTEs both when the cache sizes are
small and when the lower cache is larger than the upper
cache. In the first case, demoted blocks are discarded
before being used, and in the second they are already
present in the lower cache. As a result of data redun-
dancy between caches, Double-2Q is highly sensitive to
the portion of the aggregate cache that is in the upper
level. Karma does not suffer from those problems and
outperforms both policies (and those omitted from the
graphs) in all cache settings.

We expect Karma to maintain its advantage when the
difference in cache sizes increases. In the Basic and Dou-
ble policies the benefit of the smaller cache will become
negligible due to data redundancy, whereas in the Global
policies the amount of futile Demote operations will in-
crease. Karma, on the other hand, benefits from any ad-
ditional cache space, in any level, and maintains exclu-
sive caching by using only the necessary amount of DE-
MOTEs.

7 Related Work

We discussed several existing cache replacement policies
in Section 5. Here we elaborate on additional aspects of
related work.

Multilevel. Wong and Wilkes [49] introduced the
DEMOTE operation to prevent inclusion between cache
levels. They assume that network connections are much
faster than disks. In such settings, performance gains are
still possible even though a DEMOTE may incur a net-
work cost. Cases where network bandwidth is the bottle-
neck instead of disk contention were addressed in a later
study [51]. There, instead of evicted blocks being de-
moted from the first to the second level cache, they are
reloaded (prefetched) into the second level cache from

the disk. A complementary approach has the applica-
tion attach a “write hint” [29] to each WRITE com-
mand, choosing one of a few reasons for performing
the write. The storage cache uses these hints to “guess”
which blocks were evicted from the cache and which are
cached for further use. In X-Ray [45] the information
on the content of the upper level cache is obtained using
gray-box techniques, and derived from operations such
as file-node and write log updates.

In ULC [24], the client cache is responsible for the
content of all cache levels underneath. The level of cache
in which blocks should be kept is decided by their ex-
pected locality of reference. A “level tag” is attached to
each I/O operation, stating in which cache level the block
should be stored. In heterogeneous caching [4], some de-
gree of exclusivity can be achieved without any cooper-
ation between the levels, when each cache level is man-
aged by a different policy. A multilevel cache hierarchy
is presented, where each cache is managed by an adap-
tive policy [20], ACME (Adaptive Caching using Multi-
ple Experts): the “master” policy monitors the miss rate
of a pool of standard replacement policies and uses ma-
chine learning algorithms to dynamically shift between
those policies, in accordance with changing workloads.

Karma uses READ-SAVE to avoid unnecessary DE-
MOTEs. As with the average read access time in
ULC [24], our storage model enables specific calcula-
tions of the DEMOTE operations that actually occurred,
instead of estimating them in the cost of each READ, as
in the original evaluation [49]. The use of READ-SAVE
reflects a non-centralized operation, as opposed to the
level tags. Our results in Section 6 (Figures 5, 7, and 8)
show that exclusive caching is not enough to guarantee
low I/O cost. Karma is able to make informed replace-
ment decisions to achieve better results.

Detection-based caching. Detection based policies
use history information for each block in the cache (and
sometimes for blocks already evicted from the cache) to
try to “guess” the access pattern of the application. This
may help identify the best candidate block for eviction.
DEAR [13], AFC [14], and UBM [27], which are de-
signed for a file system cache, all collect data about the
file the block belongs to or the application requesting it,
and derive access patterns (sequential, looping, etc.).

In PCC [19], the I/O access patterns are correlated
with the program counter of the call instruction that trig-
gers the I/O requests, enabling differentiation between
multiple patterns in the same file if they are invoked by
different instructions. Each pattern is allocated a parti-
tion in the cache, whose size is adjusted dynamically un-
til the characterization of patterns stabilizes.

MRC-MM [50] monitors accesses to virtual memory
pages in order to track the page miss ratio curve (MRC)
of applications. The MRC in each “epoch” is then used

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association180

0%

20%

40%

60%

80%

100%

120%

1/161/8 1/4 1/2 3/4 1... ...2

I/
O

co
st

co
m

pa
re

d
to

L
R

U

Aggregate cache size

Basic-LRU
Double-2Q (small)
Double-2Q (same)

Double-2Q (big)

0%

20%

40%

60%

80%

100%

120%

1/161/8 1/4 1/2 3/4 1... ...2
Aggregate cache size

Basic-LRU
Global-MultiQ (small)
Global-MultiQ (same)

Global-MultiQ (big)

0%

20%

40%

60%

80%

100%

120%

1/161/8 1/4 1/2 3/4 1... ...2
Aggregate cache size

Basic-LRU
Karma (small)
Karma (same)

Karma (big)

Figure 10: Weighted I/O cost on query set 1 (the behavior is similar for all traces) when cache levels are of different sizes.
For lack of space we show results only for Karma and for the best LRU-based policies. Same: |Cache2| = |Cache1|. Big:
|Cache2| = |Cache1| × 2. Small: |Cache2| = |Cache1|/2. Double-2Q is highly sensitive to the difference in size and
Global-MultiQ suffers from overhead of DEMOTE, while Karma outperforms all policies for all cache settings.

to calculate the marginal gain of all processes. Mem-
ory utilization is maximized by allocating larger memory
portions to processes with higher marginal gain.

SARC [17], designed for a second level cache, detects
sequential streams based on access to contiguous disk
tracks. This information is used for sequential prefetch-
ing and cache management. The cache is dynamically
partitioned between random and sequential blocks.

Since Karma is provided with the characterization of
block ranges, it does not incur the additional overhead
of gathering and processing access statistics. The access
pattern and access frequency for each range are known
and on-the-fly adjustment of partition sizes is avoided.
Karma adjusts its partitions only in transitional phases,
when the application changes its access pattern.

Informed caching. A different approach to determin-
ing access patterns is to rely on application hints that are
passed to the cache management mechanism. This elim-
inates the need for detection, thus reducing the complex-
ity of the policy. However, relying on hints admittedly
limits applicability. Existing hint based policies require
the applications to be explicitly altered to manage the
caching of their own blocks. LRU-SP [10] and TIP2 [38]
are two such policies.

In TIP2, applications disclose information about their
future requests via an explicit access string submitted
when opening a file. The cache management scheme bal-
ances caching and prefetching by computing the value of
each block to its requesting application.

Unlike TIP2, Karma does not require an explicit ac-
cess string, but a general characterization of the observed
access patterns (i.e., looping, random or sequential). In
this way, it is similar to LRU-SP. This makes Karma use-
ful for applications such as databases, where accesses
can be characterized in advance into patterns.

The ability of databases to disclose information about

future accesses has made them ideal candidates for hint
generation. Database query optimizers [44] choose the
optimal execution path for a query. They aim to mini-
mize the execution cost, which is a weighted measure of
I/O (pages fetched) and CPU utilization (instructions ex-
ecuted). Once the optimal path is chosen, the pattern of
access to the relevant blocks is implicitly determined. It
can then be easily disclosed to the cache manager. A fun-
damental observation [47] was that in order for an oper-
ating system to provide buffer management for database
systems, some means must be found to allow it to accept
“advice” from an application program concerning the re-
placement strategy. The following studies base their re-
placement policy on this method.

A hot set is a set of pages over which there is a loop-
ing behavior [41]. Its size can be derived from the query
plan generated by the optimizer. In the derived replace-
ment policy [41], a separate LRU queue is maintained
for each process, with a maximal size equal to its hot set
size. DBMIN [15] enhances the hot set model in two
ways. A hot set is defined for a file, not for an entire
query. Each hot set is separately managed by a policy
selected according to the intended use of the file.

By adding marginal gains to this model, MG-x-y [36]
is able to compare how much each reference string will
“benefit” from extra cache blocks. The marginal gain of
random ranges is always positive, and so MG-x-y avoids
allocating the entire cache to only a small number of such
ranges by imposing a maximum allocation of y blocks to
each of the random ranges.

Karma builds upon the above policies, making a fine-
grained distinction between ranges. A file may contain
several ranges accessed with different characteristics. As
in DBMIN and MG-x-y, each range is managed with a
policy suited for its access pattern. Like MG-x-y, Karma
uses marginal gains for allocation decisions, but instead

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 181

of limiting the space allocated to each range it brings
every accessed block into Cache1 to capture fine-grain
locality. Most importantly, unlike the above policies,
Karma maintains all its benefits over multiple cache lev-
els.

A recent study [11] evaluates the benefit of aggressive
collaboration, i.e., use of DEMOTE, hints, or level tags,
over hierarchy-aware caching, which does not require
modifications of current storage interfaces. Their results
show that the combination of hints with global manage-
ment yields only a slight advantage over the hierarchy
aware policies. However, they experiment with very
basic hints, combined with LRU or ARC management,
while it is clear from our results that simply managing
loops with MRU replacement is enough to achieve much
better results. Since Karma distinguishes between access
patterns and manages each partition with the policy best
suited for it, its improvement is significant enough to jus-
tify the use of hints.

Storage system design. Modern storage systems are
designed as standalone platforms, separated from their
users and applications by strict protocols. This modular-
ity allows for complex system layouts, combining hard-
ware from a range of manufacturers. However, the sep-
aration between the storage and the application layers
precludes interlayer information sharing that is crucial
for cooperation between the systems components - co-
operation we believe will lead to substantial performance
gains.

Many recent studies attempt to bypass this inherent
separation: the levels gather knowledge about each other
by tracking the implicit information exposed by current
protocols. For example, in several recent studies [32, 43]
the operating system extracts information about the un-
derlying disk queues and physical layout from disk ac-
cess times. In the gray-box approach [5, 46], the stor-
age system is aware of some operating system structures
(such as inodes), and extracts information about the cur-
rent state of the file system from operations performed on
them. In C-Miner [30], no knowledge is assumed at the
storage level. The storage system uses data mining tech-
niques in order to identify correlations between blocks.
The correlations are then used for improving prefetching
and data layout decisions.

In contrast, other studies explore the possibility of
modifying traditional storage design. Some offer specific
protocol additions, such as the DEMOTE operation [49].
Others suggest a new level of abstraction, such as ob-
ject storage [6]. Other work focused on introducing new
storage management architectures aimed at optimizing
database performance [21, 42].

Karma requires some modification to existing storage
interfaces, which is not as substantial as that described
above [6, 21, 42]. This modification will enable the stor-

Policy 1st 2nd Extra Information Exclusive
level level

LRU X X X X
DEAR,UBM X X file,application X
AFC,PCC PC
LRU-SP X X pattern,priority X
TIP2 X X explicit trace X
HotSet,DBMIN X X query plan X
MG-x-y
X-Ray X X indirect hints X
Write hints
2Q,MultiQ X X X X
ARC,CAR,SARC
Demote X X X X
Global-L2
ULC X X client instructions X
ACME X X (machine learning) X
Karma X X ranges X

Table 2: Summary of cache management policies, the extra
information they require, and whether or not they are suitable
for use in first and second level caches.

age system to exploit the information available in other
levels, without paying the overhead of extracting and de-
riving this information. We believe that the additional
complexity is worthwhile, given the large performance
benefits presented in Section 6.

Table 2 summarizes the policies discussed in this pa-
per. The policies are compared according to their ability
to perform well in more than one cache level, to achieve
exclusiveness in a multilevel cache system, and to use
application hints.

8 Conclusions and Future Work

We defined a model for multilevel caching and defined
the weighted I/O cost of the system for this model as the
sum of costs of all operations performed on a trace. We
propose a policy which solves the three problems that can
occur in a multilevel cache: blurring of locality of refer-
ence in lower level caches, data redundancy, and lack of
informed caching at the lower cache levels. None of the
existing policies address all these problems.

Our proposed policy, Karma, approximates the behav-
ior of the optimal offline algorithm, MIN. Like MIN, it
aims to optimize the cache content by relying on knowl-
edge about the future, instead of on information gath-
ered in the past. Karma uses application hints to parti-
tion the cache and to manage each range of blocks with
the policy best suited for its access pattern. It saves in
the cache the blocks with the highest marginal gain and
achieves exclusive caching by partitioning the cache us-
ing DEMOTE and READ-SAVE. Karma improves the
weighted I/O cost of the system significantly. For exam-
ple, on a permutation of TPC-H queries, Karma improves
over pure LRU by an average of 85%. It adds an average

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association182

50%

60%

70%

80%

90%

100%

110%

1/16 1/8 1/4 1/2 3/4 1... ...2

I/
O

co
st

co
m

pa
re

d
to

L
R

U

Aggregate cache size (compared to size of data set)

Basic-LRU
Basic-MultiQ
Double-ARC

Global-LRU (Demote), Global-MultiQ
Karma

Figure 11: Preliminary results for an OLTP workload. Using
TPCC-UVa [31], an open-source implementation of the TPC-C
[3] benchmark, we created a trace of over 10,000,000 I/Os ac-
cessing 130,000 distinct blocks. The hints for Karma were gen-
erated using the “explain” output for each transaction’s queries,
and the frequency of each transaction. We present only the best
LRU based policies. Karma’s improvement over LRU is greater
than the improvement of all of these policies, in all cache sizes
but one, where it equals the improvement of Global-MultiQ.

of 50% to the improvement of Demote over LRU and an
average of 25% to that of LRU-SP.

When more features are added to Karma, we believe it
will be able to achieve such improvement on workloads
that are essentially different from decision support. We
intend to add calculations of marginal gain for random
ranges which are not necessarily of uniform distribution.
Karma will also handle ranges which are accessed con-
currently with more than one access pattern. Figure 11
shows our initial experiments with an OLTP workload,
demonstrating that even without such additions, Karma
outperforms existing LRU-based algorithms on such a
trace by as much as 38%.

The framework provided by Karma can be extended
to deal with further additions to our storage model.
Such additions may include running multiple concurrent
queries on the same host, multiple caches in the first
level, or prefetching. DEMOTE and READ-SAVE can
still be used to achieve exclusiveness, and the marginal
gains will have to be normalized according to the new
parameters. Karma relies on general hints and does not
require the application to submit explicit access strings
or priorities. Thus, we expect its advantages will be ap-
plicable in the future not only to databases but to a wider
range of applications.

Acknowledgments

We thank our shepherd Scott Brandt and the anonymous
reviewers for their helpful comments. We also thank Kai
Li and Avi Yadgar for fruitful discussions.

References
[1] Working draft SCSI block commands - 2 (SBC-2), 2004.

[2] TPC benchmark H standard specification, Revision 2.1.0.

[3] TPC benchmark C standard specification, Revision 5.6.

[4] Ismail Ari. Design and Management of Globally Distributed Net-
work Caches. PhD thesis, University of California Santa Cruz,
2004.

[5] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. In-
formation and control in gray-box systems. In Symposium on
Operating Systems Principles (SOSP), 2001.

[6] Alain Azagury, Vladimir Dreizin, Michael Factor, Ealan Henis,
Dalit Naor, Noam Rinetzky, Ohad Rodeh, Julian Satran, Ami
Tavory, and Lena Yerushalmi. Towards an object store. In NASA
Goddard Conference on Mass Storage Systems and Technologies
(MSST), 2003.

[7] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with adap-
tive replacement. In USENIX Conference on File and Storage
Technologies (FAST), 2004.

[8] Tsipora Barzilai and Gala Golan. Accessing application identifi-
cation information in the storage tier. Disclosure IL8-2002-0055,
IBM Haifa Labs, 2002.

[9] L.A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 5(2):78–101, 1966.

[10] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Imple-
mentation and performance of integrated application-controlled
file caching, prefetching, and disk scheduling. ACM Transactions
on Computer Systems, 14(4):311–343, 1996.

[11] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott, and
Berni Schiefer. Empirical evaluation of multi-level buffer cache
collaboration for storage systems. In SIGMETRICS, 2005.

[12] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction-based place-
ment for storage caches. In USENIX Annual Technical Confer-
ence, 2003.

[13] Jongmoo Choi, Sam H. Noh, Sang Lyul Min, and Yookun Cho.
An implementation study of a detection-based adaptive block re-
placement scheme. In USENIX Annual Technical Conference,
1999.

[14] Jongmoo Choi, Sam H. Noh, Sang Lyul Min, and Yookun Cho.
Towards application/file-level characterization of block refer-
ences: a case for fine-grained buffer management. In SIGMET-
RICS, 2000.

[15] Hong-Tai Chou and David J. DeWitt. An evaluation of buffer
management strategies for relational database systems. In Inter-
national Conference on Very Large Data Bases (VLDB), 1985.

[16] Gregory R. Ganger, Daniel Ellard, and Margo I. Seltzer. File clas-
sification in self-∗ storage systems. In International Conference
on Autonomic Computing (ICAC), 2004.

[17] Binny S. Gill and Dharmendra S. Modha. SARC: Sequential
prefetching in adaptive replacement cache. In USENIX Annual
Technical Conference, 2005.

[18] Binny S. Gill and Dharmendra S. Modha. WOW: Wise ordering
for writes-combining spatial and temporal locality in non-volatile
caches. In USENIX Conference on File and Storage Technologies
(FAST), 2005.

[19] Chris Gniady, Ali R. Butt, and Y. Charlie Hu. Program counter
based pattern classification in buffer caching. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI),
2004.

[20] Robert B. Gramacy, Manfred K. Warmuth, Scott A. Brandt, and
Ismail Ari. Adaptive caching by refetching. In Neural Informa-
tion Processing Systems (NIPS), 2002.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 183

[21] Stavros Harizopoulos and Anastassia Ailamaki. A case for staged
database systems. In Conference on Innovative Data Systems Re-
search (CIDR), 2003.

[22] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xi-
aodong Zhang. Dulo: An effective buffer cache management
scheme to exploit both temporal and spatial localities. In USENIX
Conference on File and Storage Technologies (FAST), 2005.

[23] Song Jiang and Xiaodong Zhang. LIRS: An efficient low inter-
reference recency set replacement policy to improve buffer cache
performance. In SIGMETRICS, 2002.

[24] Song Jiang and Xiaodong Zhang. ULC: A file block placement
and replacement protocol to effectively exploit hierarchical local-
ity in multi-level buffer caches. In International Conference on
Distributed Computing Systems (ICDCS), 2004.

[25] Theodore Johnson and Dennis Shasha. 2Q: a low overhead high
performance buffer management replacement algorithm. In In-
ternational Conference on Very Large Data Bases (VLDB), 1994.

[26] John F. Karpovich, Andrew S. Grimshaw, and James C. French.
Extensible file system (ELFS): an object-oriented approach to
high performance file I/O. In OOPSLA, 1994.

[27] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh,
Sang Lyul Min, Yookun Cho, and Chong Sang Kim. A low-
overhead high-performance unified buffer management scheme
that exploits sequential and looping references. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2000.

[28] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh,
Sang Lyul Min, Yookun Cho, and Chong-Sang Kim. On the ex-
istence of a spectrum of policies that subsumes the least recently
used (LRU) and least frequently used (LFU) policies. In SIG-
METRICS, 1999.

[29] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sached-
ina, and Shaobo Gao. Second-tier cache management using write
hints. In USENIX Conference on File and Storage Technologies
(FAST), 2005.

[30] Zhenmin Li, Zhifeng Chen, Sudarshan M. Srinivasan, and
Yuanyuan Zhou. C-miner: Mining block correlations in storage
systems. In USENIX Conference on File and Storage Technolo-
gies (FAST), 2004.

[31] Diego R. Llanos and Belén Palop. An open-source TPC-C imple-
mentation for parallel and distributed systems. In International
Parallel and Distributed Processing Symposium (IPDPS), 2006.

[32] Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger.
Freeblock scheduling outside of disk firmware. In USENIX Con-
ference on File and Storage Technologies (FAST), 2002.

[33] Nimrod Megiddo and Dharmendra S. Modha. ARC: A self-
tuning, low overhead replacement cache. In USENIX Conference
on File and Storage Technologies (FAST), 2003.

[34] Bruce Momjian. PostgreSQL: Introduction and Concepts.
Addison-Wesley, 2000.

[35] D. Muntz and P. Honeyman. Multi-level caching in distributed
file systems - or - your cache ain’t nuthin’ but trash. In USENIX
Winter Conference, 1992.

[36] Raymond Ng, Christos Faloutsos, and Timos Sellis. Flexible
buffer allocation based on marginal gains. In ACM SIGMOD In-
ternational Conference on Management of Data, 1991.

[37] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum.
The lru-k page replacement algorithm for database disk buffer-
ing. In ACM SIGMOD International Conference on Management
of Data, 1993.

[38] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodol-
sky, and Jim Zelenka. Informed prefetching and caching. In
Hai Jin, Toni Cortes, and Rajkumar Buyya, editors, High Perfor-
mance Mass Storage and Parallel I/O: Technologies and Applica-
tions, pages 224–244. IEEE Computer Society Press and Wiley,
NY, 2001.

[39] John T. Robinson and Murthy V. Devarakonda. Data cache man-
agement using frequency-based replacement. In SIGMETRICS,
1990.

[40] Giovanni Maria Sacco and Mario Schkolnick. A mechanism for
managing the buffer pool in a relational database system using the
hot set model. In International Conference on Very Large Data
Bases (VLDB), 1982.

[41] Giovanni Maria Sacco and Mario Schkolnick. Buffer man-
agement in relational database systems. ACM Transactions on
Database Systems (TODS), 11(4), 1986.

[42] Jiri. Schindler, Anastassia Ailamaki, and Gregory R. Ganger.
Lachesis: Robust database storage management based on device-
specific performance characteristics. In International Conference
on Very Large Data Bases (VLDB), 2003.

[43] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and
Gregory R. Ganger. Track-aligned extents: Matching access pat-
terns to disk drive characteristics. In USENIX Conference on File
and Storage Technologies (FAST), 2002.

[44] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamber-
lin, Raymond A. Lorie, and Thomas G. Price. Access path selec-
tion in a relational database management system. In ACM SIG-
MOD International Conference on Management of Data, 1979.

[45] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Database-aware
semantically-smart storage. In USENIX Conference on File and
Storage Technologies (FAST), 2005.

[46] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici,
Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Semantically-smart disk systems. In USENIX
Conference on File and Storage Technologies (FAST), 2003.

[47] Michael Stonebraker. Operating system support for database
management. Communications of the ACM, 24(7):412–418,
1981.

[48] Masamichi Takagi and Kei Hiraki. Inter-reference gap distribu-
tion replacement: an improved replacement algorithm for set-
associative caches. In International Conference on Supercom-
puting (ICS), 2004.

[49] Theodore M. Wong and John Wilkes. My cache or yours? Mak-
ing storage more exclusive. In USENIX Annual Technical Con-
ference, 2002.

[50] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghu-
raman, Yuanyuan Zhou, and Sanjeev Kumar. Dynamic track-
ing of page miss ratio curve for memory management. In Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2004.

[51] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. Second-level buffer
cache management. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(6):505–519, 2004.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association184

