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Abstract
Flash memory is prevalent in modern servers and de-

vices. Coupled with the scaling down of flash technol-
ogy, the popularity of flash memory motivates the search
for methods to increase flash reliability and lifetime. Era-
sures are the dominant cause of flash cell wear, but re-
ducing them is challenging because flash is a write-once
medium— memory cells must be erased prior to writing.

An approach that has recently received considerable at-
tention relies on write-once memory (WOM) codes, de-
signed to accommodate additional writes on write-once
media. However, the techniques proposed for reusing flash
pages with WOM codes are limited in their scope. Many
focus on the coding theory alone, while others suggest
FTL designs that are application specific, or not applicable
due to their complexity, overheads, or specific constraints
of MLC flash.

This work is the first that addresses all aspects of page
reuse within an end-to-end implementation of a general-
purpose FTL on MLC flash. We use our hardware im-
plementation to directly measure the short and long-term
effects of page reuse on SSD durability, I/O performance
and energy consumption, and show that FTL design must
explicitly take them into account.

1 Introduction
Flash memories have special characteristics that make
them especially useful for solid-state drives (SSD). Their
short read and write latencies and increasing throughput
provide a great performance improvement compared to
traditional hard disk based drives. However, once a flash
cell is written upon, changing its value from 1 to 0, it must
be erased before it can be rewritten. In addition to the la-
tency they incur, these erasures wear the cells, degrading
their reliability. Thus, flash cells have a limited lifetime,
measured as the number of erasures a block can endure.

Multi-level flash cells (MLC), which support four volt-
age levels, increase available capacity but have especially
short lifetimes, as low as several thousands of erasures.
Many methods for reducing block erasures have been
suggested for incorporation in the flash translation layer
(FTL), the SSD management firmware. These include

minimizing user and internal write traffic [14, 19, 20, 28,
37, 38, 42, 46, 55] and distributing erasure costs evenly
across the drive’s blocks [7, 22, 25, 27].

A promising technique for reducing block erasures is to
use write-once memory (WOM) codes. WOM codes alter
the logical data before it is physically written, thus allow-
ing the reuse of cells for multiple writes. They ensure that,
on every consecutive write, ones may be overwritten with
zeros, but not vice versa. Reusing flash cells with this
technique might make it possible to increase the amount
of data written to the block before it must be erased.

Flash page reuse is appealing because it is orthogonal
to other FTL optimizations. Indeed, the design of WOM
codes and systems that use them has received much atten-
tion in recent years. While the coding theory community
focuses on optimizing these codes to reduce their redun-
dancy and complexity [9, 10, 13, 17, 44, 49], the storage
community focuses on SSD designs that can offset these
overheads and be applied to real systems [24, 36, 53].

However, the application of WOM codes to state-of-
the-art flash chips is not straightforward. MLC chips im-
pose additional constraints on modifying their voltage lev-
els. Previous studies that examined page reuse on real
hardware identified some limitations on reprogramming
MLC flash, and thus resort to page reuse only on SLC
flash [24], outside an SSD framework [18], or within a
limited special-purpose FTL [31].

Thus, previous SSD designs that utilize WOM codes
have not been implemented on real platforms, and their
benefits were analyzed by simulation alone, raising the
concern that they could not be achieved in real world stor-
age systems. In particular, hardware aspects such as pos-
sible increase in cell wear and energy consumption due
to the additional writes and higher resulting voltage lev-
els have not been examined before, but may have dramatic
implications on the applicability of this approach.

In this study, we present the first end-to-end evaluation
and analysis of flash page reuse with WOM codes. The
first part of our analysis consists of a low-level evaluation
of four state-of-the-art MLC flash chips. We examine the
possibility of several reprogramming schemes for MLC
flash and their short and long-term effects on the chip’s
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durability, as well as the difference in energy consumption
compared to that of traditional use.

The second part of our analysis consists of a system-
level FTL evaluation on the OpenSSD board [4]. Our
FTL design takes into account the limitations identified
in the low-level analysis and could thus be implemented
and evaluated on real hardware. We measure erasures and
I/O response time and compare them to those observed in
previous studies.

The discrepancy between our results and previous ones
emphasizes why understanding low-level constraints on
page reuse is crucial for high-level designs and their ob-
jectives. We present the lessons learned from our analysis
in the form of guidelines to be taken into account in future
designs, implementations, and optimizations.

The rest of this paper is organized as follows. Section 2
describes the basic concepts that determine to what extent
it is possible to benefit from flash page reuse. We identify
the limitations on page reuse in MLC flash in Section 3,
with the implications on FTL design in Section 4. We de-
scribe our experimental setup and FTL implementation in
Section 5, and present our evaluation in Section 6. We sur-
vey related work in Section 7, and conclude in Section 8.

2 Preliminaries
In this section, we introduce the basic concepts that deter-
mine the potential benefit from flash page reuse: WOM
codes, MLC flash, and SSD design.

2.1 Write-Once Memory Codes
Write-once memory (WOM) codes were first introduced
in 1982 by Rivest and Shamir, for recording informa-
tion multiple times on a write-once storage medium [40].
They give a simple WOM code example, presented in Ta-
ble 1. This code enables the recording of two bits of

Data bits 1st write 2nd write
11 111 000
01 011 100
10 101 010
00 110 001

Table 1: WOM code example

information in three cells
twice, ensuring that in
both writes the cells
change their value only
from 1 to 0. For example,
if the first message to be
stored is 00, then 110 is
written, programming only the last cell. If the second
message is 10, then 010 is written, programming the
first cell as well. Note that without special encoding, 00
cannot be overwritten by 10 without prior erasure. If the
first and second messages are identical, then the cells do
not change their value between the first and second writes.
Thus, before performing a second write, the cell values
must be read in order to determine the correct encoding.

WOM code instances, or constructions, differ in the
number of achievable writes and in the manner in which
each successive write is encoded. The applicability of a
WOM code construction to storage depends on three char-
acteristics: (a) the capacity overhead —the number of

extra cells required to encode the original message, (b)
the encoding and decoding efficiency, and (c) the success
rate—the probability of producing an encoded output that
can be used for overwriting the chosen cells. Any two of
these characteristics can be optimized at the cost of com-
promising the third.

Consider, for example, the code depicted in Table 1,
where encoding and decoding are done by a simple table
lookup, and therefore have complexityO(1) and a success
rate of 100%. However, this code incurs a capacity over-
head of 50% on each write. This means that (1) only 2

3

of the overall physical capacity can be utilized for logical
data, and (2) every read and write must access 50% more
cells than what is required by the logical data size.

The theoretical lower bound on capacity overhead for
two writes is 29% [40]. Codes that incur this minimal
overhead (capacity achieving) are not suitable for real sys-
tems. They either have exponential and thus inapplica-
ble complexity, or complexity of n logn (where n is the
number of encoded bits) but a failure rate that approaches
1 [10, 56]. Thus, early proposals for rewriting flash pages
using WOM codes that were based on capacity achieving
codes were impractical. In addition, they required par-
tially programming additional pages on each write, mod-
ifying the physical page size [8, 18, 23, 30, 36, 50], or
compressing the logical data prior to encoding [24].

Two recently suggested WOM code families, Polar [9,
10] and LDPC [56], have the same complexities as the er-
ror correction codes they are derived from. For these com-
plexities, different constructions incur different capacity
overheads, and the failure rate decreases as the capacity
overhead increases. Of particular interest are construc-
tions in which the overhead of the first write is 0, i.e., one
logical page is written on one physical page. The data
encoded for the second write requires two full physical
pages for one logical page. Such a construction is used in
the design of ReusableSSD [53], where the second write is
performed by programming pages containing invalid data
on two different blocks in parallel.

2.2 Multi-Level Cell (MLC) Flash
A flash chip is built from floating-gate cells whose state
depends on the number of electrons they retain. Writing
is done by programming the cell, increasing the threshold
voltage (Vth) required to activate it. Cells are organized in
blocks, which are the unit of erasure. Blocks are further
divided into pages, which are the read and program units.

Single-level cells (SLC) support two voltage levels,
mapped to either 1 (in the initial state) or 0. Thus, SLC
flash is a classic write-once memory, where pages can be
reused by programming some of their 1’s to 0’s. We re-
fer to programming without prior erasure as reprogram-
ming. Multi-level cells (MLC) support four voltage levels,
mapped to 11 (in the initial state), 01, 00 or 10. This map-
ping, in which a single bit is flipped between successive
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Figure 1: Normal
programming order
and states of MLC
flash. ER is the ini-
tial (erased) state.
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states, minimizes bit errors if the cell’s voltage level is dis-
turbed. The least and most significant bits represented by
the voltage levels of a multi-level cell are mapped to two
separate pages, the low page and high page, respectively.
These pages can be programmed and read independently.
However, programming must be done in a certain order to
ensure that all possible bit combinations can be read cor-
rectly. Triple-level cells (TLC) support eight voltage lev-
els, and can thus store three bits. Their mapping schemes
and programming constraints are similar to those of MLC
flash. We focus our discussion on MLC flash, which is the
most common technology in SSDs today.

Figure 1 depicts a normal programming order of the low
and high bits in a multi-level cell. The cell’s initial state
is the erased (ER) state corresponding to 11. The low
bit is programmed first: programming 1 leaves the cell in
the erased state, while programming 0 raises its level and
moves it to a temporary state. Programming the high bit
changes the cell’s state according to the state it was in after
the low bit was programmed, as shown in the bottom part
of the figure.1 We discuss the implications of this mapping
scheme on page reuse in the following section.

Bit errors occur when the state of the cell changes un-
intentionally, causing a bit value to flip. The reliability of
a flash block is measured by its bit error rate (BER)—the
average number of bit errors per page. The high voltage
applied to flash cells during repeated program and erase
operations gradually degrades their ability to retain the ap-
plied voltage level. This causes the BER to increase as the
block approaches the end of its lifetime, which is mea-
sured in program/erase (P/E) cycles.

Bit errors in MLC flash are due mainly to retention er-
rors and program disturbance [11]. Retention errors occur
when the cell’s voltage level gradually decreases below
the boundaries of the state it was programmed to. Pro-
gram disturbance occurs when a cell’s state is altered dur-
ing programming of cells in a neighboring page. In the
following section, we discuss how program disturbance
limits MLC page reuse, and evaluate the effects of reusing
a block’s pages on its BER.

Error correction codes (ECC) are used to correct some
of the errors described above. The redundant bits of the
ECC are stored in each page’s spare area. The number of

1Partially programming the high bit in the temporary state is designed
to reduce program disturbance.

A16 A27 B16 B29 C35
Feature size 16nm 27nm 16nm 29nm 35nm
Page size 16KB 8KB 16KB 4KB 8KB
Pages/block 256 256 512 256 128
Spare area (%) 10.15 7.81 11.42 5.47 3.12
Lifetime (T ) 3K 5K 10K 10K NA

Table 2: Evaluated flash chip characteristics. A, B and C rep-
resent different manufacturers. The C35 chip was examined in a
previous study, and is included here for completeness.

bit errors an ECC can correct increases with the number
of redundant bits, chosen according to the expected BER
at the end of a block’s lifetime [56].

Write requests cannot update the data in the same place
it is stored, because the pages must first be erased. Thus,
writes are performed out-of-place: the previous data lo-
cation is marked as invalid, and the data is written again
on a clean page. The flash translation layer (FTL) is the
SSD firmware component responsible for mapping logical
addresses to physical pages. We discuss relevant compo-
nents of the FTL further in Section 4.

3 Flash Reliability
Flash chips do not support reprogramming via their stan-
dard interfaces. Thus, the implications of reprogramming
on the cells’ state transitions and durability cannot be de-
rived from standard documentation, and require experi-
mentation with specialized hardware. We performed a se-
ries of experiments with several state-of-the-art flash chips
to evaluate the limitations on reprogramming MLC flash
pages and the implications of reprogramming on the chip’s
lifetime, reliability, and energy consumption.

3.1 Flash Evaluation Setup
We used four NAND flash chips from two manufacturers
and various feature sizes, detailed in Table 2. We also
include in our discussion the observations from a previous
study on a chip from a third manufacturer [31]. Thus, our
analysis covers three out of four existing flash vendors.

Chip datasheets include the expected lifetime of the
chip, which is usually the maximal number of P/E cycles
that can be performed before the average BER reaches
10−3. However, cycling the chips in a lab setup usually
wears the cells faster than normal operation because they
program and erase the same block continuously. Thus, the
threshold BER is reached after fewer P/E cycles than ex-
pected. In our evaluation, we consider the lifetime (T ) of
the chips as the minimum of the expected number of cy-
cles, and the number required to reach a BER of 10−3.

Our experiments were conducted using the SigNASII
commercial NAND flash tester [6]. The tester allows soft-
ware control of the physically programmed flash blocks
and pages within them. By disabling the ECC hardware
we were able to examine the state of each cell, and to count
the bit errors in each page.
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Figure 2: State transitions in the three reprogramming schemes. A thin arrow represents an attempted transition. A dashed
arrow represents a failed transition, with a bold arrow representing the erroneous transition that takes place instead. Only LLH
reprogramming achieves all the required transitions for page reuse without program disturbance.

Some manufacturers employ scrambling within their
chip, where a random vector is added to the logical data
before it is programmed. Scrambling achieves uniform
distribution of the flash cell levels, thus reducing various
disturbance effects. In order to control the exact data that
is programmed on each page, we bypass the scrambling
mechanism on the chips that employ it.

Our evaluation excludes retention errors, which occur
when considerable time passes between programming and
reading a page. Reprogramming might increase the prob-
ability of retention errors because it increases the cell’s
Vth. However, since it is intended primarily for hot data,
we believe it will not cause additional retention errors.

3.2 Limitations on reprogramming
Flash cell reprogramming is strictly limited by the con-
straint that Vth can only increase, unless the block is
erased. At the same time, WOM encoding ensures that
reprogramming only attempts to change the value of each
bit from 1 to 0. However, additional limitations are im-
posed by the scheme used for mapping voltage levels to
bit values, and by the need to avoid additional program
disturbance. Thus, page reuse must follow a reprogram-
ming scheme which ensures that all reprogrammed cells
reach their desired state. We use our evaluation setup to
examine which state transitions are possible in practice.
We first consider three reprogramming schemes in which
a block has been fully programmed, and show why they
are impractical. We then validate the applicability of re-
programming when only the low pages of the block have
been programmed before.

Let us assume that the entire block’s pages have been
programmed before they are reused. Thus, the states of
the cells are as depicted in the bottom row of Figure 1. In
the low-high-low (LHL) reprogramming scheme, depicted
in Figure 2(a), we attempt to program the low bit from this
state. The thin arrows depict possible desired transitions
in this scheme. Two such transitions are impossible, re-
sulting in an undesired state (depicted by the bold arrow).

In the low-high-high (LHH) reprogramming scheme, de-
picted in Figure 2(b), the high page is reprogrammed in a
fully used block. Here, too, two state transitions fail.

A possible reason for the failed transitions in the LHL
scheme is that the voltage applied by the command to pro-
gram the low bit is not high enough to raise Vth from P1
to P2 and from ER to P3.2 The transition from P3 to
P2 in the LHH scheme is impossible, because it entails
decreasing Vth. Another problem in the LHH scheme oc-
curs in state P1 when we attempt to leave the already pro-
grammed high bit untouched. Due to an unknown distur-
bance, the cell transitions unintentionally to P2, corrupt-
ing the data on the corresponding low page.

Three of these problematic transitions can probably
be made possible with proper manufacturer support—the
transition from P3 to P2 in the LHH scheme would be
possible with a different mapping of voltage levels to
states, and the two transitions in the LHL scheme could
succeed if a higher voltage was applied during reprogram-
ming. While recent technology trends, such as one-shot
programming and 3D V-NAND [21], eliminate some con-
straints on page programming, applying such architectural
changes to existing MLC flash might amplify program dis-
turbance and increase the BER. Thus, they require careful
investigation and optimization.

An alternative to modifying the state mapping is modi-
fying the WOM encoding, so that the requirement that 1’s
are only overwritten by 0’s is replaced by the requirement
that 0’s are only overwritten by 1’s. Figure 2(c) shows the
resulting low-high-high (LHH) reprogramming scheme.
Its first drawback is that it corrupts the low pages, so a high
page can be reused only if the data on the low page is ei-
ther invalid, or copied elsewhere prior to reprogramming.
Such reprogramming also corrupted the high pages adja-
cent to the reprogrammed one. Thus, this scheme allows
safe reprogramming of only one out of two high pages.

2The transition from ER to P3 actually succeeded in the older, C35
chip [31]. All other problematic transitions discussed in this section
failed in all the chips in Table 2.
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Figure 2: State transitions in the three reprogramming schemes. A thin arrow represents an attempted transition. A dashed
arrow represents a failed transition, with a bold arrow representing the erroneous transition that takes place instead. Only LLH
reprogramming achieves all the required transitions for page reuse without program disturbance.

Some manufacturers employ scrambling within their
chip, where a random vector is added to the logical data
before it is programmed. Scrambling achieves uniform
distribution of the flash cell levels, thus reducing various
disturbance effects. In order to control the exact data that
is programmed on each page, we bypass the scrambling
mechanism on the chips that employ it.

Our evaluation excludes retention errors, which occur
when considerable time passes between programming and
reading a page. Reprogramming might increase the prob-
ability of retention errors because it increases the cell’s
Vth. However, since it is intended primarily for hot data,
we believe it will not cause additional retention errors.

3.2 Limitations on reprogramming
Flash cell reprogramming is strictly limited by the con-
straint that Vth can only increase, unless the block is
erased. At the same time, WOM encoding ensures that
reprogramming only attempts to change the value of each
bit from 1 to 0. However, additional limitations are im-
posed by the scheme used for mapping voltage levels to
bit values, and by the need to avoid additional program
disturbance. Thus, page reuse must follow a reprogram-
ming scheme which ensures that all reprogrammed cells
reach their desired state. We use our evaluation setup to
examine which state transitions are possible in practice.
We first consider three reprogramming schemes in which
a block has been fully programmed, and show why they
are impractical. We then validate the applicability of re-
programming when only the low pages of the block have
been programmed before.

Let us assume that the entire block’s pages have been
programmed before they are reused. Thus, the states of
the cells are as depicted in the bottom row of Figure 1. In
the low-high-low (LHL) reprogramming scheme, depicted
in Figure 2(a), we attempt to program the low bit from this
state. The thin arrows depict possible desired transitions
in this scheme. Two such transitions are impossible, re-
sulting in an undesired state (depicted by the bold arrow).

In the low-high-high (LHH) reprogramming scheme, de-
picted in Figure 2(b), the high page is reprogrammed in a
fully used block. Here, too, two state transitions fail.

A possible reason for the failed transitions in the LHL
scheme is that the voltage applied by the command to pro-
gram the low bit is not high enough to raise Vth from P1
to P2 and from ER to P3.2 The transition from P3 to
P2 in the LHH scheme is impossible, because it entails
decreasing Vth. Another problem in the LHH scheme oc-
curs in state P1 when we attempt to leave the already pro-
grammed high bit untouched. Due to an unknown distur-
bance, the cell transitions unintentionally to P2, corrupt-
ing the data on the corresponding low page.

Three of these problematic transitions can probably
be made possible with proper manufacturer support—the
transition from P3 to P2 in the LHH scheme would be
possible with a different mapping of voltage levels to
states, and the two transitions in the LHL scheme could
succeed if a higher voltage was applied during reprogram-
ming. While recent technology trends, such as one-shot
programming and 3D V-NAND [21], eliminate some con-
straints on page programming, applying such architectural
changes to existing MLC flash might amplify program dis-
turbance and increase the BER. Thus, they require careful
investigation and optimization.

An alternative to modifying the state mapping is modi-
fying the WOM encoding, so that the requirement that 1’s
are only overwritten by 0’s is replaced by the requirement
that 0’s are only overwritten by 1’s. Figure 2(c) shows the
resulting low-high-high (LHH) reprogramming scheme.
Its first drawback is that it corrupts the low pages, so a high
page can be reused only if the data on the low page is ei-
ther invalid, or copied elsewhere prior to reprogramming.
Such reprogramming also corrupted the high pages adja-
cent to the reprogrammed one. Thus, this scheme allows
safe reprogramming of only one out of two high pages.

2The transition from ER to P3 actually succeeded in the older, C35
chip [31]. All other problematic transitions discussed in this section
failed in all the chips in Table 2.

The benefits from such a scheme are marginal, as these
pages must also store the redundancy of the encoded data.

Interestingly, reprogramming the high bits in chips from
manufacturer A returned an error code and did not change
their state, regardless of the attempted transition. A pos-
sible explanation is that this manufacturer might block re-
programming of the high bit by some internal mechanism
to prevent the corruption described above.

The problems with the LHL and LHH schemes moti-
vated the introduction of the low-low-high (LLH) repro-
gramming scheme by Margaglia et al. [31]. Blocks in
this scheme are programmed in two rounds. In the first
round only the low pages are programmed. The second
round takes place after most of the low pages have been
invalidated. All the pages in the block are programmed
in order, i.e., a low page is reprogrammed and then the
corresponding high page is programmed for the first time,
before moving on to the next pair of pages.

We validated the applicability of the LLH scheme on
the chips of manufacturers A and B. Figure 2(d) depicts
the corresponding state transitions of the cells. Since both
programming and reprogramming of the low bit leave the
cell in either the erased or temporary state, there are no
limitations on the programming of the high page in the
bottom row. This scheme works well in all the chips we
examined. However, it has the obvious drawback of leav-
ing half of the block’s capacity unused in the first round.
This leads to the first lesson from our low-level evaluation.

Lesson 1: Page reuse in MLC flash is possible, but can
utilize only half of the pages and only if some of its ca-
pacity has been reserved in advance. FTL designs must
consider the implications of this reservation.

3.3 Average Vth and BER
In analyzing the effects of reprogramming on a chip’s
durability, we distinguish between short-term effects on
the BER due to modifications in the current P/E cycle, and
long-term wear on the cell, which might increase the prob-
ability of errors in future cycles. With this distinction, we
wish to identify a safe portion of the chip’s lifetime, dur-
ing which the resulting BER as well as the long term wear
are kept at an acceptable level.

Reprogramming increases the probability that a cell’s
value is 0. Thus, the average Vth of reused pages is higher
than that of pages that have only been programmed once.
A higher Vth increases the probability of a bit error. The
short-term effects of increased Vth include increased pro-
gram disturbance and retention errors, which are a direct
result of the current Vth of the cell and its neighboring
cells. The long-term wear is due to the higher voltage ap-
plied during programming and erasure.

Our first set of experiments evaluated the short-term ef-
fects of increased Vth on a block’s BER. In each chip, we
performed T regular P/E cycles writing random data on
one block, where T is the lifetime of the chip as detailed

Num. of PLLH cycles A16 A27 B16 B29
T (= entire lifetime) 32% 29% 20% 30.5%

0.6× T 8% 9% 8% 9%
0.4× T 6% 6.5% 6% 6.5%
0.2× T 2% 3% 3% 3.5%

Table 3: Expected reduction in lifetime due to increased Vth.
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Figure 3: Effects of increased Vth on the A16 chip.

in Table 2. We repeated this processwith different distri-
butions of 1 and 0. P0.5, in which the probability of a bit to
be 0 is 0.5, is our baseline. With PLLH the probability of
0 was 0.75 and 0.5 in the low and high page, respectively.
This corresponds to the expected probabilities after LLH
reprogramming. We read the block’s content and recorded
the BER after every P/E cycle. We repeated each experi-
ment on six blocks, and calculated the average.

The implication of an increase in BER depends on
whether it remains within the error correction capabili-
ties of the ECC. A small increase in BER at the end of
a block’s lifetime might deem it unusable, while a large
increase in a ‘young’ block has little practical effect. For
a chip with lifetime T , let T ′ be the number of cycles re-
quired to reach a BER of 10−3 in this experiment. Then
T − T ′ is the lifetime reduction caused by increasing Vth.
Our results, summarized in Table 3, were consistent in all
the chips we examined.3 Programming with PLLH , which
corresponds to a higher average Vth, shortened the chips’
lifetime considerably, by 20–32%.

In the next set of experiments, we evaluated the long-
term effects of Vth. Each experiment had two parts: we
programmed the block with PLLH in the first part, for a
portion of its lifetime, and with P0.5 in the second part,
which consists of the remaining cycles. Thus, the BER
in the second part represents the long-term effect of the
biased programming in the first part. We varied the length
of the first part between 20%, 40% and 60% of the block’s
lifetime. Figure 3 shows the BER of blocks in the A16
chip (the graphs for the different chips were similar), with
the lifetime reduction of the rest of the chips in Table 3.

Our results show that the long-term effect of increas-
ing Vth is modest, though nonnegligible—increasing Vth

early in the block’s lifetime shortened it by as much as
3.5%, 6.5% and 9%, with increased Vth during 20%, 40%
and 60% of the block’s lifetime, respectively.

3The complete set of graphs for all the experiments described in this
section is available in our technical report [54].
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Figure 4: Short-term effects of reprogramming on the A16 chip.
Num. of LLH cycles A16 A27 B16 B29
T (= entire lifetime) 38% 59.5% 99% 31%

0.6× T 8.5% 8% 7% 8.5%
0.4× T 5.2% 6% 5% 5.5%
0.2× T 1% 2.5% 3% 3%

Table 4: Expected reduction in lifetime due to reprogramming.

3.4 Reprogramming and BER
In the third set of experiments, we measured the effects
of reprogramming by performing T LLH reprogramming
cycles on blocks in each chip. Figure 4 shows the BER
results for the A16 chip, and Table 4 summarizes the ex-
pected lifetime reduction for the remaining chips.

In all the chips, the BER in the first round of program-
ming the low pages was extremely low, thanks to the lack
of interference from the high pages. In the second round,
however, the BER of all pages was higher than the base-
line, and resulted in a reduction of lifetime greater than
that caused by increasing Vth. We believe that a major
cause of this difference are optimizations tailored for the
regular LH programming order [39]. These optimizations
are more common in recent chips, such as the B16 chip.

In the last set of experiments, we evaluated the long-
term effects of reprogramming. Here, too, each exper-
iment was composed of two parts: we programmed the
block with LLH reprogramming in the first part, and with
P0.5 and regular programming in the second part. We var-
ied the length of the first part between 20%, 40% and 60%
of the block’s lifetime. Figure 5 shows the BER results
for the A16 chip, and Table 4 summarizes the expected
lifetime reduction for the remaining chips.

We observe that the long-term effects of reprogramming
are modest, and comparable to the long-term effects of in-
creasing Vth. This supports our assumption that the addi-
tional short-term increase in BER observed in the previous
set of experiments is not a result of the actual reprogram-
ming process, but rather of the mismatch between the pro-
gramming order the chips are optimized for and the LLH
reprogramming scheme. This is especially evident in the
B16 chip, in which the BER during the first part was high
above the limit of 10−3, but substantially smaller in the
second part of the experiment.

Thus, schemes that reuse flash pages only at the be-
ginning of the block’s lifetime can increase its utilization
without degrading its long-term reliability. Moreover, in
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Figure 5: Long-term effects of reprogramming on the A16 chip.
Operation Baseline (µJ) LLH (µJ)
Erase 192.79 186.49
Read (L) 50.37 50.37
Read (H) 51.25 51.25
Program (L1) 68.18 68.55
Reprogram (L2) NA 63.04
Program (H) 195.65 180.85
Average logical read 50.81 60.79
Average logical write 132.64 145.71

Table 5: Energy consumed by flash operations on chip A16.

all but the B16 chips, LLH reprogramming in the first
40% of the block’s lifetime resulted in BER that was well
within the error correction capabilities of the ECC. We
rely on this observation in our FTL design in Section 4.

We note, however, that the variance between the chips
we examined is high, and that short and long-term effects
do not depend only on the feature size. For example, the
A16 chip is “better” than the A27 chip, but the B16 chip is
“worse” than the B29 chip. This leads to the second lesson
from our low-level evaluation.

Lesson 2: The portion of the block’s lifetime in which its
pages can be reused safely depends on the characteristics
of its chip. The FTL must take into account the long-term
implications of reuse on the chips it is designed for.
3.5 Energy consumption
Flash read, write and erase operations consume different
amounts of energy, which also depend on whether the op-
eration is performed on the high page or on the low one,
and on its data pattern. We examined the effect of repro-
gramming on energy consumption by connecting an oscil-
loscope to the SigNAS tester. We calculated the energy
consumed by each of the following operations on the A16
chip: an erasure of a block programmed with PLLH and
p=0.5, reading and writing a high and a low page, repro-
gramming a low page, and programming a high page on a
partially-used block.

To account for the transfer overhead of WOM encoded
data, our measurements of read, program and reprogram
operations included the I/O transfer to/from the registers.
Our results, averaged over three independent measure-
ments, are summarized in Table 5. We also present the
average energy consumption per read or write operation
with baseline and with LLH reprogramming, taking into
account the size of the programmed data, the reading of
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Figure 6: Block life cycle in a Low-Low-High FTL.

used pages for supplying the invalid data as input to the
WOM encoder, and the number of pages that can be writ-
ten before each erasure.

These results show that page reuse consumes more
overall energy than the baseline. This is in contrast to
previous studies showing possible energy savings. These
studies assumed that the energy is proportional to the num-
ber of programmed cells, which is equivalent in a first and
in a second write [18, 53]. However, our hardware eval-
uation shows that the number of reprogrammed pages is
the dominant factor in energy consumption. While repro-
gramming a lower page consumes less energy than the av-
erage logical write in the baseline, the use of WOM en-
coding entails an extra read and page reprogram for each
logical write. The low energy consumption of the saved
erasures does not offset the additional energy consumed
by those operations. We note, however, that when page
reuse reduces the internal writes by the FTL, some energy
savings may result. We examine that possibility further in
Section 6, but can already draw the following lesson.

Lesson 3: With WOM encoded data, the energy con-
sumed by the additional flash operations is larger than
that required by the saved erase operations. Energy sav-
ings are possible only if they reduce the number of write
operations performed on the flash chip.

4 FTL Design
Following our lessons from Section 3, we describe the
general design principles for a Low-Low-High FTL—an
FTL that reuses flash pages using the LLH reprogramming
scheme. We assume such an FTL would run on the SSD
controller, and utilize the physical page and block opera-
tions supported by the flash controller. Thus, it shares the
following basic concepts with the standard FTL and SSD.

To accommodate out-of-place writes, the physical stor-
age capacity of the drive is larger than its exported logical
capacity. The drive’s overprovisioning is defined as T−U

U
,

where T and U represent the number of physical and logi-
cal blocks, respectively [15]. Typical values of overprovi-
sioning are 7% and 28% for consumer and enterprise class
SSDs, respectively [45].

Whenever the number of clean blocks drops below a
certain threshold, garbage collection is invoked. Garbage
collection is typically performed greedily, picking the
block with the minimum valid count (the lowest number
of valid pages) as the victim for cleaning. The valid pages

are moved—read and copied to another available block,
and then the block is erased. These additional internal
writes, referred to as write amplification, delay the clean-
ing process, and require, eventually, additional erasures.
Write amplification does not accurately represent the uti-
lization of drives that reuse pages for WOM encoded data,
since some redundancy must always be added to the log-
ical data to enable second writes [51, 52]. Thus, instead
of deriving the number of erasures performed by the FTL
from its write amplification, we measure them directly.

Low-Low-High (LLH) programming. Blocks in a
Low-Low-High FTL cycle between four states, as de-
picted in Figure 6. In the initial, clean state all the cells
are in the erased state, ER. If all the pages are programmed
(write L1H), the block reaches the used state. Alterna-
tively, if only the low pages are used (write L1), the block
reaches the partially-used state. A partially-used block
can be reused, in which case the FTL will reprogram all or
some of the low pages and all the high pages (write L2H),
transitioning the block to the reused state. Alternatively,
the FTL can program the high pages and leave the low
pages untouched (write H), thus transitioning the block
to the used state. Used and reused blocks return to the
clean state when they are erased.

The choice of state transition is determined by the con-
ditions depicted in Figure 6. The conditions that deter-
mine when to partially use, use or reuse a block, as well
as the encoding scheme used for reprogrammed pages, are
in turn determined by the specific FTL design. We next
describe LLH-FTL—the FTL used for our evaluation.

WOM encoding. When WOM codes are employed for
reusing flash pages, the FTL is responsible for determin-
ing whether a logical page is written in a first or a sec-
ond write, and for recording the required metadata. The
choice of WOM code determines the data written on the
low pages of partially-used blocks, and the data written on
them when they are reprogrammed. The encoding scheme
in LLH-FTL is similar to that of ReusableSSD [53]. Data
in the low pages of partially-used blocks is written as is,
without storage or encoding overheads. Data written as
a second write on low pages of reused blocks is encoded
with a Polar WOM code that requires two physical pages
to store the encoded data of one logical page [9, 10]. This
WOM implementation has a 0.25% encoding failure rate.

We note that the mathematical properties of WOM
codes ensure they can be applied to any data pattern,
including data that was previously scrambled or com-
pressed. In fact, WOM encoding also ensures an even
distribution of zeroes throughout the page, and can thus
replace data scrambling on second writes.

While manufacturers have increased the flash page size
(see Table 2), the most common size used by file sys-
tems remains 4KB. Our LLH-FTL design distinguishes
between the logical page used by the host and some larger
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physical page size. Thus, the FTL maps several logical
pages onto each physical page. This allows LLH-FTL to
program the encoded data for a second write on one phys-
ical page. In the rest of this section we assume that the
physical page size is exactly twice the logical page size.
We note that the changes required in the design if the phys-
ical pages are even larger are straightforward.

If the physical and logical page sizes are equal, a Low-
Low-High FTL can utilize the multi-plane command that
allows programming two physical pages in parallel on two
different blocks, as in the ReusableSSD design. In both
approaches, the latency required for reading or writing an
encoded logical page on a second write is equal to the la-
tency of one flash page write.

As in the design of ReusableSSD [53], LLH-FTL ad-
dresses the 0.25% probability of encoding failure by writ-
ing the respective logical page as a first write on a clean
block, and prefetches the content of physical pages that are
about to be rewritten to avoid the latency of an additional
read. Pages are reprogrammed only in the safe portion of
their block’s lifetime (the first 40% in all but one of the
chips we examined), thus limiting the long-term effect of
reprogramming to an acceptable level.

Hot and cold data separation. Workloads typically
exhibit a certain amount of skew, combining frequently
updated hot data with infrequently written cold data. Sep-
arating hot and cold pages has been demonstrated as ben-
eficial in several studies [16, 22, 25, 47]. Previous stud-
ies also showed that second writes are most beneficial for
hot pages, minimizing the time in which the capacity of
reused blocks is not fully utilized [31, 36, 52, 53]. In
LLH-FTL, we write hot data on partially-used and reused
blocks, and cold data on used blocks. Hot data on par-
tially-used blocks is invalidated quickly, maximizing the
benefit from reusing the low pages they are written on.
Reused blocks store pages in first as well as in second
writes. Nevertheless, we use them only for hot data, in or-
der to maintain the separation of hot pages from cold ones.
The classification of hot and cold pages is orthogonal to
the design of LLH-FTL, and can be done using a variety
of approaches [12, 22, 33, 47]. We describe the classifica-
tion schemes used in our experiments in Section 5.

Partially-use, use and reuse conditions. The number
of partially-used blocks greatly affects the performance of
a Low-Low-High FTL. Too few mean that the blocks will
be reused too soon, while they still contain too many valid
low pages, thus limiting the benefit from reprogramming.
Too many mean that too many high pages will remain un-
used, reducing the available overprovisioned space, which
might increase internal page moves. The three conditions
in Figure 6 control the number of partially-used blocks: if
the partially-use condition does not hold, a clean block is
used with regular LH programming. In addition, the FTL
may define a use condition, which specifies the circum-

stances in which a partially-used block is reclaimed, and
its high pages will be written without rewriting the low
pages. Finally, the reuse condition ensures efficient reuse
of the low pages. The FTL allows partially-used blocks to
accumulate until the reuse condition is met.

Our LLH-FTL allows accumulation of at most
thresholdpu partially-used blocks. This threshold is up-
dated in each garbage collection invocation. An increase
in the valid count of the victim block compared to previ-
ous garbage collections indicates that the effective over-
provisioned space is too low. In this case the threshold is
decreased. Similarly, a decrease in the valid count indi-
cates that page reuse is effective in reducing garbage col-
lections, in which case the threshold is increased to allow
more reuse. Thus, the partially-use and reuse conditions
simply compare the number of partially-used blocks to
the threshold. To maintain the separation between hot and
cold pages, LLH-FTL does not utilize the use condition.
Expected benefit. The reduction in erasures in LLH-

FTL depends on the amount of hot data in the work-
load, and on the number of valid pages that remain on
partially-used blocks when they are reused. We assume,
for the sake of this analysis, that the low pages on a
reused block, as well as all the pages on an erased block,
have all been invalidated. Without reprogramming, this
means that there is no write amplification, and the ex-
pected number of erasures is E=M

N
, where M is the num-

ber of logical page write requests, and N is the number
of pages in each block. With LLH programming, every
two low pages are reused to write an extra logical page,
so N+N

4
logical pages are written on each block before it

is erased. Let X be the portion of hot data in the work-
load, 0 ≤ X < 1, and recall that only blocks containing
hot pages are reused. Then the expected number of era-
sures is E′=(1−X)M

N
+X M

N+N

4

=E(5−X
5

). The maximal
reduction in erasures is expected in traces where almost
all the write requests access hot pages (X → 1), where
E′ = 0.8E, a reduction of 20%.

For a rough estimate of the resulting lifetime extension,
let us assume that all the blocks are reused in the first 40%
of their lifetime, i.e., during 0.4T cycles. In each of these
cycles, 5N

4
logical pages are written on these blocks, a to-

tal of 0.5TN . Assuming we can use the remaining 0.6T
cycles, we write an additional 0.6TN pages. The total
amount of data written is 1.1TN , an increase of 10% com-
pared to regular programming. However, we must also
consider the reduction in lifetime observed in the exper-
iments in Section 3.3. A 5%–6% reduction means that
the reduction in erasures translates to a modest 4%–5%
increase in lifetime.

Comparing our analysis to that of previous designs is
not straightforward. Most studies, including of designs
that reuse flash pages with WOM codes, did not consider
the overall amount of logical data that could be written
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on the device. The only comparable analysis is that of
ReusableSSD [53], which resulted in an estimated reduc-
tion of up to 33% of erasures, assuming that all the blocks
(storing both hot and cold data) could be reused, and that
both the low and high pages could be reprogrammed. This
analysis also excluded the lifetime reduction due to repro-
gramming. This discrepancy leads to our next lesson.

Lesson 4: A reduction in erasures does not necessarily
translate to a substantial lifetime increase, due to the low
utilization of pages that store WOM encoded data, and to
the long-term effects of reprogramming. The increase in
lifetime strongly depends on chip characteristics.

5 SSD Evaluation Setup
In our FTL evaluation, we wish to quantify the possible
benefit from reusing flash pages with WOM codes, when
all the limitations of physical MLC flash and practical
codes are considered. Thus, we measure the savings in
erasures and the lifetime extension they entail, as well as
the effects of LLH reprogramming on I/O performance.

5.1 OpenSSD evaluation board
We use the OpenSSD Jasmineboard [4] for our FTL eval-
uation. The board includes an ARM-based IndilinxTM

Barefoot controller, 64MB of DRAM for storing the flash
translation mapping and SATA buffers, and eight slots for
custom flash modules, each of which can host four 64Gb
35nm MLC flash chips. The chips have two planes and
8KB physical pages. The device uses large 32KB virtual
pages for improved parallelism. Thus, erase blocks are
4MB and consist of 128 contiguous virtual pages [4].

On the OpenSSD board, an FTL that uses 8KB pages
rather than 32KB virtual pages incurs unacceptable laten-
cies [43]. Thus, we use a mapping granularity of 4KB
logical pages and a merge buffer that ensures that data is
written at virtual-page granularity [31, 43]. The downside
of this optimization is an exceptionally large block size
(1024 logical pages) that increases the valid count of used
and partially-used blocks. As a result, garbage collection
entails more page moves, and reprogramming is possible
on fewer pages.

We were also unable to fully implement WOM encoded
second writes on the OpenSSD board. While mature and
commonly used error correction codes are implemented
in hardware, the Polar WOM codes used in our design are
currently only available with software encoding and de-
coding. These implementations are prohibitively slow, and
are thus impractical for latency evaluation purposes. In ad-
dition, in OpenSSD, only the ECC hardware accelerator is
allowed to access the page spare area, and cannot be dis-
abled. Thus, reprogrammed pages will always appear as
corrupted when compared with their corresponding ECC.
This also prevents the FTL from utilizing the page spare
area for encoding purposes [53]. We address these limita-
tions in our FTL implementation described below.

5.2 FTL Implementation
The FTL used on the OpenSSD board is implemented in
software, and can thus also be used as an emulator of SSD
performance when executed on a standard server without
being connected to the actual board. Replaying a work-
load on the emulator is considerably faster than on the
board itself, because it does not perform the physical flash
operations. We validated this emulator, ensuring that it re-
ports the same count of flash operations as would be per-
formed on the actual board. Thus, using the emulator, we
were able to experiment with a broad set of setups and
parameters that are impractical on the Jasmine board. In
particular, we were able to evaluate an FTL that uses 8KB
physical pages, rather than the 32KB physical pages man-
dated by the limitations of the board.We refer to the FTL
versions with 32KB pages as 〈FTL name〉-32.

We first implemented a baseline FTL that performs only
first writes on all the blocks. It employs greedy garbage
collection within each bank and separates hot and cold
pages by writing them on two different active blocks. The
identification of hot pages is described in Section 5.3. We
also implemented LLH-FTL described in Section 4.4 It
uses greedy garbage collection for choosing the block with
the minimum number of valid logical pages among used
and reused blocks. Garbage collection is triggered when-
ever a clean block should be allocated and no such block is
available. If the number of partially-used blocks is lower
than the threshold and a hot active block is required, LLH-
FTL allocates the partially-used block with the minimum
valid count. If the threshold is exceeded or if a cold active
block is required, it allocates a new clean block.

The threshold is updated after each garbage collection,
taking into account the valid count in w previous garbage
collections. Due to lack of space, we present results only
forw = 5, and two initial threshold values, which were the
most dominant factor in the performance of LLH-FTL.

LLH-FTL reuses low pages on partially-used blocks
only if all the logical pages on them have been invali-
dated. LLH-FTL-32 writes four logical pages on each
reused physical pages, requiring eight consecutive invalid
logical pages in order to reuse a low page. We evaluate the
effect of this limitation on LLH-FTL-32 in Section 6.

Our implementation of LLH-FTL does not include ac-
tual WOM encoding and decoding for the reasons de-
scribed above. Instead, it writes arbitrary data during re-
programming of low pages, and ignores the ECC when
reading reprogrammed data. In a real system, the WOM
encoding and decoding would be implemented in hard-
ware, and incur the same latency as the ECC. Thus, in
our evaluation setup, their overheads are simulated by the
ECC computations on the OpenSSD board. Coding fail-
ures are simulated by a random “coin flip” with the appro-
priate probability. To account for the additional prefetch-

4The code for the emulator and FTLs is available online [1, 2].
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src1 2 2 16 3.15 0.75 0.22 45
stg 0 2 3.36 0.85 0.85 16
hm 0 4 32 6.6 0.64 0.7 23
rsrch 0 1.5 2.37 0.91 0.95 11
src2 0 1.5 2.58 0.89 0.91 10
ts 0 2 2.98 0.82 0.94 12
usr 0 2.5 3.7 0.6 0.86 14
wdev 0 1 1.89 0.8 0.85 7
prxy 0 12.5 64 20.7 0.97 0.67 83
proj 0 4 6.98 0.88 0.14 145
web 0 2 3.36 0.7 0.87 17
online 5.5 16 3.14 0.74 0.31 16
webresearch 3 1.8 1 0.41 13
webusers 8 4.26 0.9 0.32 27
webmail 8 32 4.3 0.82 0.3 24
web-online 14 7.88 0.78 0.31 43
zipf(0.9,0.95,1) 12.5 16 200 1 0.5 48

Table 6: Trace characteristics of MSR (top box), FIU (middle),
and synthetic (bottom) workloads.

ing of the invalid data, this data is read from the flash into
the DRAM, but is never transferred to the host.

5.3 Workloads
We use real world traces from two sources. The first is
the MSR Cambridge workload [5, 35], which contains
week-long traces from 36 volumes on 13 servers. The
second is a set of traces from FIU [3, 29], collected dur-
ing three weeks on servers of the computer science depart-
ment. Some of the volumes are too big to fit on the drive
size supported by our FTL implementation, which is lim-
ited by the DRAM available on the OpenSSD. We used the
16 traces whose address space fit in an SSD size of 64GB
or less, and that include enough write requests to invoke
the garbage collector on that drive. These traces vary in
a wide range of parameters, summarized in Table 6. We
also used three synthetic workloads with a Zipf distribu-
tion with exponential parameter α = 0.9, 0.95 and 1.

We used a different hot/cold classification heuristic for
each set of traces. For the MSR traces, pages were classi-
fied as cold if they were written in a request of size 64KB
or larger. This simple online heuristic was shown to per-
form well in several previous studies [12, 22, 53]. In the
FIU traces, all the requests are of size 4KB, so accesses to
contiguous data chunks appear as sequential accesses. We
applied a similar heuristic by tracking previously accessed
pages, and classifying pages as cold if they appeared in a
sequence of more than two consecutive pages. In the syn-
thetically generated Zipf traces, the frequency of access
to page n is proportional to 1

αn . Thus, we extracted the
threshold n for each Zipf trace, such that pages with logi-
cal address smaller than n were accessed 50% of the time,
and pages with logical address larger than n were classi-
fied as cold. While this classification is impossible in real
world settings, these traces demonstrate the benefit from
page reuse under optimal conditions.

Each workload required a different device size, and
thus, a different number of blocks. In order to maintain
the same degree of parallelism in all experiments, we al-
ways configured the SSD with 16 banks, with 256, 512
and 1024 4MB blocks per bank for drives of size 16GB,
32GB and 64GB, respectively. Pages were striped across
banks, so that page p belonged to bank b = p mod 16.

6 Evaluation
Reduction in erasures. To verify that the expected reduc-
tion in erasures from LLH reprogramming can be achieved
in real workloads, we calculated the expected reduction
for each workload according to the formula in Section 4.
We then used the emulator to compare the number of era-
sures performed by the baseline and LLH-FTL. Our re-
sults are presented in Figure 7(a), where the workloads
are aggregated according to their source (and correspond-
ing hot page classification) and ordered by the amount of
data written divided by the corresponding drive size. Our
results show that the normalized number of erasures is be-
tween 0.8 and 1. The reduction in erasures mostly depends
on the workload and the amount of hot data in it.

The amount of overprovisioning (OP) substantially af-
fects the benefit from reprogramming. With 28% overpro-
visioning, the reduction in erasures is very close to the ex-
pected reduction. Low overprovisioning is known to incur
excessive internal writes. Thus, with the already low 7%
overprovisioning, reserving partially-used blocks for addi-
tional writes was not as efficient for reducing erasures; it
might increase the number of erasures instead. The adap-
tive thresholdpu avoids this situation quite well, as it is
decreased whenever the valid count increases. Still, the re-
duction in erasures is smaller than with OP=28% because
both the low overprovisioning and low threshold result in
more valid logical pages on the partially-used blocks, al-
lowing fewer pages to be reused.

The time required for the adaptive thresholdpu to con-
verge depends on its initial value. In setups where the
reservation of partially-used blocks is useful, such as high
overprovisioning, LLH-FTL with initial thresholdpu =
OP/2 achieves greater reduction than with thresholdpu =
OP/4, because a higher initial value means that the opti-
mal value is found earlier. The difference between the two
initial values is smaller for traces that write more data, al-
lowing the threshold more time to adapt.

The quality of the hot data classification also affected
the reduction in erasures. While the baseline and LLH-
FTL use the same classification, misclassification inter-
feres with page reuse in a manner similar to low overpro-
visioning, as it increases the number of valid logical pages
during block erase and reuse. This effect is demonstrated
in the lower reductions achieved on the FIU workloads, in
which classification was based on a naive heuristic.

We repeated the above experiments with LLH-FTL-32,
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 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

w
de

v_
0

sr
c2

_0

rs
rc

h_
0

ts
_0

us
r_

0

st
g_

0

N
o
rm

a
li

z
e
d
 E

ra
su

re
s

Expected
OP=28%
OP=7%

(b) LLH-FTL-32
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(c) LLH-FTL-32
Figure 7: (a) Normalized number of erasures (compared to baseline) of LLH-FTL (b) Normalized number of erasures (compared
to baseline-32) of LLH-FTL-32 (c) Normalized I/O response time (compared to baseline-32) of LLH-FTL-32 (c).

to evaluate the effect of increasing the physical page size.
Indeed, the reduction in erasures was smaller than with
8KB pages, although the differences were minor. The av-
erage difference was 1% with 28% overprovisioning, but
it was 6% with 7% overprovisioning because of the higher
number of leftover valid logical pages on each physical
page in partially-used blocks.

I/O response time. To evaluate the effect of LLH repro-
gramming on I/O response time, we replayed the work-
loads on the OpenSSD board. We warmed up the board
by filling the SSD and then replaying the workload twice,
measuring the I/O response time in the last 12 hours of
each workload. We accelerated the workloads by a factor
of 10 in order to speed up the experiment. While main-
taining the original access pattern, the accelerated request
rate is more realistic for workloads that use SSDs.

We use LLH-FTL-32 with the optimal initial
thresholdpu for representative MSR traces. Fig-
ure 7(b) shows the normalized number of erasures
compared to baseline-32, and Figure 7(c) shows the
normalized I/O response time of LLH-FTL-32. Despite
the considerable reduction in erasures, and thus, garbage
collection invocations, the average I/O response time
is almost unchanged. The 90th and 99th percentiles
were also similar. This contradicts previous simulation
results [53] that correlated the reduction in erasures with
a reduction in I/O response time.

One reason for this discrepancy is that the accumulation
of write requests in the merge buffers in OpenSSD causes
writes to behave asynchronously—the write request re-
turns to the host as complete once the page is written in
the buffer. Flushing the merge buffer onto a physical flash
page is the cause for latency in writes. The baseline flushes
the buffer whenever eight logical pages are accumulated in
it. However, a buffer containing WOM encoded data must
be flushed after accumulating four logical pages, possibly
incurring additional latency. This effect was not observed
in previous studies that used a simulator that flushes all

writes synchronously.
The average I/O response time does not increase be-

cause even though the trace is accelerated, the extra buffer
flushes usually do not delay the following I/O requests. In
addition, due to the allocation of partially-used and reused
pages for hot data, this data is more likely to reside on low
pages, which are faster to read and program [18].

The second reason for the discrepancy is the reserva-
tion of partially-used blocks for reprogramming. This re-
duces the available overprovisioned capacity, potentially
increasing the number of valid pages that must be copied
during each garbage collection. As a result, although the
number of erasures decreased, the total amount of data
copied by LLH-FTL-32 was similar to that copied by the
baseline, and sometimes higher (by up to 50%). One ex-
ception is the src1 2 workload, where in the last 12 hours,
garbage collection in LLH-FTL-32 moved less data than
in baseline-32. In the other traces, the total delay caused
by garbage collections was not reduced, despite the con-
siderably lower number of erasures.

Energy consumption. We used the values from Table 5
and the operation counts from the emulator to compare the
energy consumption of LLH-FTL-32 to that of baseline-
32. The energy measurements were done on the A16 chip,
whose page size is 16KB. We doubled the values for the
read and program operations to estimate the energy for
programming 32KB pages as in LLH-FTL-32. Figure 8
shows that when reprogramming reduced erasures, the en-
ergy consumed by LLH-FTL-32 increased with inverse
proportion to this reduction. This is not surprising, since
the reduction in erasures does not reduce the amount of
internal data copying in most of the workloads. In the FIU
traces with 7% OP, reprogramming increased the number
of erasures due to increased internal writes, which, in turn,
also increased the energy consumption.

Lesson 5: A reduction in erasures does not necessarily
translate to a reduction in I/O response time or energy
consumption. These are determined by the overall amount
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Figure 8: Normalized energy consumption (compared to
baseline-32) of LLH-FTL-32 with two overprovisioning values.

of data moved during garbage collections. Designs that
are aimed at reducing energy consumption or I/O response
time should address these objectives explicitly.

7 Related Work
Several studies proposed FTL designs that reuse pages to
extend SSD lifetime. Some are based on capacity achiev-
ing codes, and bound the resulting capacity loss by limit-
ing second writes to several blocks [36] or by assuming the
logical data has been compressed by the upper level [24].
The overheads and complexities in these designs are ad-
dressed in the design of ReusableSSD [53]. However,
none of these studies addressed the limitations of repro-
gramming MLC flash pages. Some of these limitations
were addressed in the design of an overwrite compatible
B+-tree data structure, assuming the mapping of Vth to
bits can be modified [26]. Like the previous approaches,
it has been implemented only in simulation. Extended P/E
cycles [31] were implemented on real hardware, but the
FTL that uses them relies on the host to supply and indi-
cate data that is overwrite compatible. LLH-FTL is the
first general-purpose FTL that addresses all practical lim-
itations of WOM codes as well as MLC flash. Thus, we
were able to demonstrate its strengths and weaknesses on
real hardware and workloads.

Numerous studies explored the contributors to BER in
flash, on a wide variety of chip technologies and manu-
facturers. They show the effects of erasures, retention,
program disturbance and scaling down technology on the
BER [11, 18, 32, 48]. These studies demonstrate a trend
of increased BER as flash feature sizes scale down, and
the need for specialized optimizations employed by man-
ufacturers as a result. Thus, we believe that some of the
interference effects observed in our experiments are a re-
sult of optimizing the chips for regular LH programming.
Adjusting these optimizations to LLH reprogramming is a
potential approach to increase the benefit from page reuse.

Several studies examined the possibility of reprogram-
ming flash cells. Most used either SLC chips [24], or
MLC chips as if they were SLC [17]. A thorough study

on 50nm and 72nm MLC chips demonstrated that after a
full use of the block (LH programming), half of the pages
are “WOM-safe” [18]. However, they do not present the
exact reprogramming scheme, nor the problems encoun-
tered when using other schemes. A recent study [31]
mapped all possible state transitions with reprogramming
on a 35nm MLC chip, and proposed the LLH reprogram-
ming scheme. Our results in Section 3 show that smaller
feature sizes impose additional restrictions on reprogram-
ming, but that LLH reprogramming is still possible.

Previous studies examined the energy consumption of
flash chips as a factor of the programmed pattern and
page [34], and suggested methods for reducing the energy
consumption of the flash device [41]. To the best of our
knowledge, this study is the first to measure the effect of
reprogramming on the energy consumption of a real flash
chip and incorporate it into the evaluation of the FTL.

8 Conclusions
Our study is the first to evaluate the possible benefit from
reusing flash pages with WOM codes on real flash chips
and an end-to-end FTL implementation. We showed that
page reuse in MLC flash is possible, but can utilize only
half of the pages and only if some of its capacity has been
reserved in advance. While reprogramming is safe for at
least 40% of the lifetime of the chips we examined, it in-
curs additional long-term wear on their blocks. Thus, even
with an impressive 20% reduction in erasures, the increase
in lifetime strongly depends on chip physical characteris-
tics, and is fairly modest.

A reduction in erasures does not necessarily translate to
a reduction in I/O response time or energy consumption.
These are determined by the overall amount of data moved
during garbage collections, which strongly depends on the
overprovisioning. The reduction in physical flash page
writes is limited by the storage overhead of WOM encoded
data, and is mainly constrained by the limitation of reusing
only half of the block’s pages.

This study exposed a considerable gap between the pre-
viously shown benefits of page reuse, which were based on
theoretical analysis and simulations, and those that can be
achieved on current state-of-the-art hardware. However,
we believe that most of the limitations on these benefits
can be addressed with manufacturer support, and that the
potential benefits of page reuse justify reevaluation of cur-
rent MLC programming constraints.

Acknowledgments
We thank the anonymous reviewers and our shepherd, An-
drea Arpaci-Dusseau, whose suggestions helped improve
this paper. We also thank Alex Yucovich and Hila Arobas
for their help with the low-level experiments. This work
was supported in part by BSF grant 2010075, NSF grant
CCF-1218005, ISF grant 1624/14 and EU Marie Curie Ini-
tial Training Network SCALUS grant 238808.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 107

References

[1] https://github.com/zdvresearch/fast2016-ftl.
[2] https://github.com/zdvresearch/fast2016-openssd-

emulator.
[3] I/O deduplication traces. http://sylab-

srv.cs.fiu.edu/doku.php?id=projects:iodedup:start.
Retrieved: 2014.

[4] Jasmine OpenSSD platform. http://www.openssd-
project.org/.

[5] SNIA IOTTA. http://iotta.snia.org/traces/388. Re-
trieved: 2014.

[6] NAND flash memory tester (SigNASII).
http://www.siglead.com/eng/innovation signas2.html,
2014.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs
for SSD performance. In USENIX Annual Technical
Conference (ATC), 2008.

[8] A. Berman and Y. Birk. Retired-page utilization
in write-once memory – a coding perspective. In
IEEE International Symposium on Information The-
ory (ISIT), 2013.

[9] D. Burshtein. Coding for asymmetric side informa-
tion channels with applications to polar codes. In
IEEE International Symposium on Information The-
ory (ISIT), 2015.

[10] D. Burshtein and A. Strugatski. Polar write once
memory codes. IEEE Transactions on Information
Theory, 59(8):5088–5101, 2013.

[11] Y. Cai, O. Mutlu, E. Haratsch, and K. Mai. Pro-
gram interference in MLC NAND flash memory:
Characterization, modeling, and mitigation. In 31st
IEEE International Conference onComputer Design
(ICCD), 2013.

[12] M.-L. Chiao and D.-W. Chang. ROSE: A novel flash
translation layer for NAND flash memory based on
hybrid address translation. IEEE Transactions on
Computers, 60(6):753–766, 2011.

[13] G. D. Cohen, P. Godlewski, and F. Merkx. Linear bi-
nary code for write-once memories. IEEE Transac-
tions on Information Theory, 32(5):697–700, 1986.

[14] J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller,
C. Sandvig, R. Sears, A. Tamches, N. Vachhara-
jani, and F. Wang. Purity: Building fast, highly-
available enterprise flash storage from commodity
components. In ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), 2015.

[15] P. Desnoyers. What systems researchers need to
know about NAND flash. In 5th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStor-
age), 2013.

[16] P. Desnoyers. Analytic models of SSD write perfor-
mance. Trans. Storage, 10(2):8:1–8:25, Mar. 2014.

[17] E. En Gad, H. W., Y. Li, and J. Bruck. Rewriting
flash memories by message passing. In IEEE Inter-
national Symposium on Information Theory (ISIT),
2015.

[18] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf. Char-
acterizing flash memory: Anomalies, observations,
and applications. In 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
2009.

[19] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasub-
ramaniam. Leveraging value locality in optimizing
NAND flash-based SSDs. In 9th USENIX Confer-
ence on File and Storage Technologies (FAST), 2011.

[20] S. Huang, Q. Wei, J. Chen, C. Chen, and D. Feng.
Improving flash-based disk cache with lazy adaptive
replacement. In IEEE 29th Symposium on Mass Stor-
age Systems and Technologies (MSST), 2013.

[21] J.-W. Im et al. A 128Gb 3b/cell V-NAND flash mem-
ory with 1gb/s i/o rate. In IEEE International Solid-
State Circuits Conference (ISSCC), 2015.

[22] S. Im and D. Shin. ComboFTL: Improving per-
formance and lifespan of MLC flash memory using
SLC flash buffer. J. Syst. Archit., 56(12):641–653,
Dec. 2010.

[23] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin.
Writing cosets of a convolutional code to increase the
lifetime of flash memory. In 50th Annual Allerton
Conference on Communication, Control, and Com-
puting, 2012.

[24] A. Jagmohan, M. Franceschini, and L. Lastras. Write
amplification reduction in NAND flash through
multi-write coding. In 26th IEEE Symposium on
Mass Storage Systems and Technologies (MSST),
2010.

[25] X. Jimenez, D. Novo, and P. Ienne. Wear unleveling:
Improving NAND flash lifetime by balancing page
endurance. In 12th USENIX Conference on File and
Storage Technologies (FAST), 2014.

[26] J. Kaiser, F. Margaglia, and A. Brinkmann. Extend-
ing SSD lifetime in database applications with page
overwrites. In 6th International Systems and Storage
Conference (SYSTOR), 2013.

[27] T. Kgil, D. Roberts, and T. Mudge. Improving
NAND flash based disk caches. In 35th Annual
International Symposium on Computer Architecture
(ISCA), 2008.

[28] H. Kim and S. Ahn. BPLRU: A buffer management
scheme for improving random writes in flash stor-
age. In 6th USENIX Conference on File and Storage



108 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Technologies (FAST), 2008.
[29] R. Koller and R. Rangaswami. I/O deduplication:

Utilizing content similarity to improve I/O perfor-
mance. Trans. Storage, 6(3):13:1–13:26, Sept. 2010.

[30] X. Luojie, B. M. Kurkoski, and E. Yaakobi. WOM
codes reduce write amplification in NAND flash
memory. In IEEE Global Communications Confer-
ence (GLOBECOM), 2012.

[31] F. Margaglia and A. Brinkmann. Improving MLC
flash performance and endurance with extended P/E
cycles. In IEEE 31st Symposium on Mass Storage
Systems and Technologies (MSST), 2015.

[32] N. Mielke, T. Marquart, N. Wu, J. Kessenich,
H. Belgal, E. Schares, F. Trivedi, E. Goodness, and
L. Nevill. Bit error rate in NAND flash memories.
In Reliability Physics Symposium (IRPS). IEEE In-
ternational, 2008.

[33] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom.
SFS: Random write considered harmful in solid state
drives. In 10th USENIX Conference on File and Stor-
age Technologies (FAST), 2012.

[34] V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi,
M. Stan, and S. Swanson. Modeling power consump-
tion of NAND flash memories using FlashPower.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(7):1031–1044,
July 2013.

[35] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: Practical power management for enter-
prise storage. Trans. Storage, 4(3):10:1–10:23, Nov.
2008.

[36] S. Odeh and Y. Cassuto. NAND flash architec-
tures reducing write amplification through multi-
write codes. In IEEE 30th Symposium on Mass Stor-
age Systems and Technologies (MSST), 2014.

[37] Y. Oh, J. Choi, D. Lee, and S. H. Noh. Caching less
for better performance: Balancing cache size and up-
date cost of flash memory cache in hybrid storage
systems. In 10th USENIX Conference on File and
Storage Technologies (FAST), 2012.

[38] H. Park, J. Kim, J. Choi, D. Lee, and S. Noh. Incre-
mental redundancy to reduce data retention errors in
flash-based SSDs. In IEEE 31st Symposium on Mass
Storage Systems and Technologies (MSST), 2015.

[39] K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y.
Choi, Y.-T. Lee, C. Kim, and K. Kim. A zeroing cell-
to-cell interference page architecture with temporary
LSB storing and parallel MSB program scheme for
MLC NAND flash memories. IEEE Journal of Solid-
State Circuits, 43(4):919–928, April 2008.

[40] R. L. Rivest and A. Shamir. How to Reuse a Write-
Once Memory. Inform. and Contr., 55(1-3):1–19,

Dec. 1982.
[41] M. Salajegheh, Y. Wang, K. Fu, A. Jiang, and

E. Learned-Miller. Exploiting half-wits: Smarter
storage for low-power devices. In 9th USENIX Con-
ference on File and Stroage Technologies (FAST),
2011.

[42] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier:
A lightweight, consistent and durable storage cache.
In 7th ACM European Conference on Computer Sys-
tems (EuroSys), 2012.

[43] M. Saxena, Y. Zhang, M. M. Swift, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Getting real:
Lessons in transitioning research simulations into
hardware systems. In 11th USENIX Conference on
File and Storage Technologies (FAST), 2013.

[44] A. Shpilka. Capacity achieving multiwrite WOM
codes. IEEE Transactions on Information Theory,
60(3):1481–1487, 2014.

[45] K. Smith. Understanding SSD over-provisioning.
EDN Network, January 2013.

[46] G. Soundararajan, V. Prabhakaran, M. Balakrishnan,
and T. Wobber. Extending SSD lifetimes with disk-
based write caches. In 8th USENIX Conference on
File and Storage Technologies (FAST), 2010.

[47] R. Stoica and A. Ailamaki. Improving flash write
performance by using update frequency. Proc. VLDB
Endow., 6(9):733–744, July 2013.

[48] E. Yaakobi, L. Grupp, P. Siegel, S. Swanson, and
J. Wolf. Characterization and error-correcting codes
for TLC flash memories. In International Confer-
ence on Computing, Networking and Communica-
tions (ICNC), 2012.

[49] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and
J. K. Wolf. Codes for write-once memories. IEEE
Transactions on Information Theory, 58(9):5985–
5999, 2012.

[50] E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swan-
son, and J. K. Wolf. Error characterization and cod-
ing schemes for flash memories. In IEEE GLOBE-
COM Workshops (GC Wkshps), 2010.

[51] E. Yaakobi, A. Yucovich, G. Maor, and G. Yadgar.
When do WOM codes improve the erasure factor in
flash memories? In IEEE International Symposium
on Information Theory (ISIT), 2015.

[52] G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster. It’s
not where your data is, it’s how it got there. In 7th
USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage), 2015.

[53] G. Yadgar, E. Yaakobi, and A. Schuster. Write once,
get 50% free: Saving SSD erase costs using WOM
codes. In 13th USENIX Conference on File and Stor-
age Technologies (FAST), 2015.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 109

[54] G. Yadgar, A. Yucovich, H. Arobas, E. Yaakobi,
Y. Li, F. Margaglia, A. Brinkmann, and A. Schuster.
Limitations on MLC flash page reuse and its effects
on durability. Technical Report CS-2016-02, Com-
puter Science Department, Technion, 2016.

[55] J. Yang, N. Plasson, G. Gillis, and N. Talagala. HEC:
Improving endurance of high performance flash-
based cache devices. In 6th International Systems
and Storage Conference (SYSTOR), 2013.

[56] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng,
and T. Zhang. LDPC-in-SSD: Making advanced er-
ror correction codes work effectively in solid state
drives. In 11th USENIX Conference on File and Stor-
age Technologies (FAST), 2013.




