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Abstract—Large scale consolidation of distributed systems in-
troduces data sharing between consumers which are not centrally
managed, but may be physically adjacent. For example, shared
global data sets can be jointly used by different services of the
same organization, possibly running on different virtual machines
in the same data center. Similarly, neighboring CDNs provide fast
access to the same content from the Internet. Cooperative caching,
in which data are fetched from a neighboring cache instead of
from the disk or from the Internet, can significantly improve
resource utilization and performance in such scenarios.

However, existing cooperative caching approaches fail to
address the selfish nature of cache owners and their conflicting
objectives. This calls for a new storage model that explicitly
considers the cost of cooperation, and provides a framework for
calculating the utility each owner derives from its cache and from
cooperating with others. We define such a model, and construct
four representative cooperation approaches to demonstrate how
(and when) cooperative caching can be successfully employed
in such large scale systems. We present principal guidelines for
cooperative caching derived from our experimental analysis. We
show that choosing the best cooperative approach can decrease
the system’s I/0 delay by as much as 87%, while imposing
cooperation when unwarranted might increase it by as much
as 92%.

I. INTRODUCTION

Resource consolidation is a prevalent means for saving
power, maintenance, administrative and acquisition costs. Tra-
ditionally, storage and compute resources were consolidated
within organizations [1], [2]. Recently, however, resources are
being consolidated on a much larger scale, often involving
resources owned, or chartered, by different entities. Common
examples include computational grids [3], clouds [4], and large
scale data centers [5].

The widespread use of such large scale environments
introduces new data sharing scenarios, where the same data
are accessed by physically neighboring services or end users
of different priority or ownership. The fast, high bandwidth
network within these environments makes it substantially
cheaper to access data from a neighbor’s cache than it is to
access the shared storage. Common scenarios involve separate
services that use the same data repository [6], [7]. For example,
customer data hosted on a DBaaS (database as a service) cloud
may be accessed by a company’s search engine, as well as by
an external advertisement service, hosted on the same cloud.
The services run on separate sets of virtual machines, but,
augmented with a simple messaging protocol, they can access
data stored in each other’s cache.

Another example is content distribution networks, fre-
quently used for large-scale content delivery, offsetting traffic
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from the content provider’s infrastructure. Recently, several
working groups have been discussing interfaces and specifica-
tions to facilitate federated CDNs [8], [9]. The feasibility of
such federation depends on a suitable cooperation model that
will enable sharing of cache content between these otherwise
competing entities [10].

Cooperative caching can eliminate unnecessary redundancy
and greatly improve performance by avoiding slow access
to content residing on disk or at WAN distances. However,
cooperation incurs additional overheads that may degrade
the performance of some participating caches. Thus, selfish
cache owners, having separate, possibly conflicting, objective
functions, will not cooperate.

Cloud users are a textbook example of selfish entities,
since they are directly charged for the resources that they
rent [11]. They may agree to “sublet” their caches within some
cooperative framework [12], but will do so only if their return
on investment is guaranteed. For example, consider two depart-
ments within the same organization, accessing the same data
but paying separate cloud and electricity bills. Accessing one
another’s caches will increase their cache utilization, providing
improved performance, or, alternatively, opportunity to scale
down their caching tiers and reduce costs [13]. However, each
department will agree to cooperate only if it is certain that its
own bill will not increase as a result.

Existing frameworks for cooperative storage caching were
designed for centrally owned caches, with the goal of min-
imizing global I/O response time [14], [15], [16], [17], [18],
[19], and lack incentives for selfish cache owners to cooperate.
While selfishness is well-studied in the network domain [20],



[21], [22], [23], the corresponding peer-to-peer mechanisms
deal with short term cooperation. We will show in our analysis
that these mechanisms are insufficient for efficient coopera-
tion in stateful systems such as caches. At the same time,
existing theoretical models for cooperation are computationally
hard [24] and impractical for managing large scale dynamic
systems.

The above limitations of existing approaches call for a new
storage model. Such a model should satisfy two requirements:
an explicit accounting for the cost of cooperation, and a way
to compute the true utility provided by a cache in a collabo-
rative system. This will allow cache owners to calculate their
return on investment, by weighing both the work invested in
cooperation and its effect on individual performance.

Our contribution is threefold. First, we define a new
storage model that satisfies the above requirements. Second,
we present four novel caching approaches whose variations
cover a range of client behaviors, from selfish to altruistic,
where clients always cooperate. Third, from the extensive
analysis of these approaches, we derive basic rules of thumb
for cooperative caching. These rules, depicted in Figure 1,
expose the potential benefits and limitations of cooperation
with selfish clients. For example, we show that choosing the
best cooperative approach can decrease the time spent on
I/0O by as much as 87%, while imposing cooperation when
unwarranted can as much as double this time.

The rest of this paper is organized as follows. In Section II,
we motivate our new cooperative storage model, and formalize
its operations and costs. We introduce our new cooperative
approaches in Section III, and describe our evaluation method-
ology in Section IV. We present our results and analysis in
Section V, with additional design considerations in Section VI.
We discuss related work in Section VII, and conclude in
Section VIII.

II. COOPERATIVE STORAGE MODEL

Traditionally, cooperative caching was considered in sys-
tems with central ownership and management. Accordingly,
the goal of cooperative global memory management algorithms
was to optimize the entire system’s I/O response time [14],
[15], [16], [17], [18]. However, in the emerging resource
consolidation models, caches belong to different owners and
administrative domains, and should primarily be used for the
purpose and benefit of their owners. Therefore, a new storage
model is required, that addresses caches as selfish entities,
which cooperate with one another only if the benefit of doing
so exceeds the cost. In this section, we describe the two
key requirements from such a model, followed by a formal
definition of our proposed model and its operations. We refer
to selfish cache owners as clients, while server refers to the
system’s centrally owned, shared, cache.

A. Service Cost

Previous research on cooperative caching focused on how
cooperation affects the hit rate of participating caches, and
consequently, on determining which data blocks to store in
each cache. In this study, we consider, for the first time, the
cost incurred on the serving cache; its CPU must initiate a
copy of the requested data block, after which the network
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transfer takes place in the background, involving its NIC and
possibly its DMA engine. This cost is usually negligible when
compared to the cost of the disk or Internet access that the
service replaces. However, the cost is incurred on the serving
cache, while the benefit is gained by its peer. Thus, this
cost may prevent selfish cache owners from participating in
a cooperative caching scheme.

Therefore, the first requirement of the new model is to
explicitly define a SERVE operation, similar to the way existing
models define READ and WRITE. The cost of SERVE should
be explicitly stated in terms of the cache owner’s objective
function, allowing it to choose whether to perform the oper-
ation. The cost of existing I/O operations is usually defined
in terms of the disk accesses, network transfers, and queuing
delays they incur. We describe the cost of SERVE for a few
prevalent objective functions.

When the objective is to minimize I/O response time or
application run time, the cost of SERVE is the service delay —
the delay in its own compute tasks incurred by a client while its
CPU is busy serving peer requests. The delay may be shorter
if the client’s CPU is idle, waiting for I/O, when the request
arrives. Another cost, which is out of this paper’s scope, is
the additional energy consumed by the CPU when serving a
peer, no matter when the request arrives — either the CPU
was busy doing actual work and must now do the work of
serving the request, or it was in an idle, “sleep” state, and
must now “wake up” before its I/O operation is complete. This
cost is regularly considered in the context of ad hoc networks
of battery operated devices [23]. It is also closely related to
objectives such as Energy productivity [25], [26] which are
used to characterize individual applications’ performance in
data centers.

Serving peer requests consumes the client’s upload band-
width, whose cost implicitly motivates BitTorrent’s “tit for
tat” policy [20]. We elaborate on the relationship between
upload bandwidth limitations and download objectives in Sec-
tion IV-A. Finally, when a SERVE is performed to benefit
a competing business as in the federated CDN vision, the
financial implications should be carefully calculated and in-
corporated into its cost.

B. Utility

Cache owners should be able to compare the cost incurred
by cooperation to the benefit it entails. Thus, the second
requirement is that a client be able to measure the utility
it derives from the content of its own cache, as well as the



utility it can derive from remote caches. We define the utility
of a cache as the savings in I/O cost achieved by using the
cache. These savings depend on the cache content as well as on
the various I/O costs in each particular storage setting. Selfish
clients aim to cooperate iff

Utility (private cache content without cooperation) <
[Utility (private cache content with cooperation)'
+ Utility (content accessed from remote caches)
— Cost (total accesses to remote caches)
— Cost (total SERVES to peers)].

The system’s incentive mechanism may include some form
of credit transfer for each cooperative transaction between pairs
of clients. In that case, the utility of each such transaction can
be computed on the basis of the change in cache content and
credit transfer of that transaction.

To compute the utility of a cache, its owner must be
familiar with the relative costs of operations in the system,
e.g., how expensive is a disk access compared to an access to
a peer cache. In addition, it must be able to evaluate the data
blocks stored in the cache — the expected hit rate derived from
the cache’s contents for the duration of cooperation. Hit rate
can be calculated, for example, on the basis of query execution
plans in relational databases, or other forms of application
hints [27] and workload attributes [2]. When accurate hints
are unavailable, the hit rate can be estimated via methods
such as statistics gathering in separate queues [28] or ghost
caches [29], analytic models [13] and active sampling [4].

Two parameters determine the selfish behavior of a client.
One is the decision which blocks to cache, and the other is
the decision which blocks to SERVE. Figure 3 depicts the
schematic scale of selfishness, which is affected by these two
parameters. At one end, perfectly altruistic clients cooperate
entirely according to the system’s global objective. At the other
end, perfectly selfish clients cooperate strictly according to the
above inequality. We expect most realistic implementations to
reside throughout this parameter space, indicating that clients
may be willing to risk some extra costs for potential benefits in
the future. We expect the clients’ behavior to be affected, for
example, by their ability to predict their utility, the system’s
ability to guarantee the expected benefit from cooperation, their
trust in their peers, etc. We discuss the relative importance of
the two parameters in the following sections.

A model based on costs and utilities is particularly ap-
pealing in the context of cloud environments. Cloud services
are explicitly priced, and users are expected to continuously
analyze their costs, benefits, and alternatives, to determine their
required resources and SLAs [4], [11], [13], [30], [31], [32].
They can leverage the same calculations to estimate their utility
from cooperation. In addition, cloud providers may enhance
their services by providing a framework for cooperation, thus
increasing the utility customers can derive from their resources.

C. Model Definitions

Our model, depicted in Figure 2, consists of several clients
with access to a shared, centrally owned, storage server. Clients
are separate, possibly virtual, machines, each with a private
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Figure 3. Parameters that affect client selfishness. Selfish clients aim to
minimize the work they do for others and to cache the blocks most valuable
to them.

cache. For simplicity, we assume that each client is running
a single service or application.> The server provides access to
data residing on persistent sforage, either on a disk attached to
it or on the Internet. It also manages its own cache of blocks
fetched from the storage.

In addition, clients may access blocks stored in caches of
neighboring clients, called peers. We assume that the clients
and server are placed at uniform distances, in terms of access
time, from one another, while the storage is much further away.
The clients and the server can be trusted in terms of data
integrity and adherence to caching and cooperation protocols.
However, clients are autonomous — they decide whether to
participate in the protocol, according to their selfish objectives.

The basic I/O operation in our model is READ, with which
clients fetch blocks from the server. We add to it three coop-
erative operations. On a cache miss, a client may REQUEST
a block from one of its peers. The peer either SERVES the
request, sending the block to the requesting client, or REJECTS
the request. The cooperative operations can be implemented by
a simple messaging protocol, and do not depend on the client’s
physical location. The decisions whether to SERVE or REJECT
a request, and whether to store or discard SERVED blocks,
are not defined by the operation. Rather, they depend on the
cooperative caching approach adopted by the clients.

Our model defines three basic costs, whose values are
determined by the clients’ objective functions:
— Clet 1s the cost of performing a local network transfer. This
cost is incurred on a client whenever it receives a block from
the server cache or from a peer.
— Cstorage 18 the cost of performing a disk or Internet access.
Since all data blocks first arrive at the server cache, even if they
are not stored there, the cost incurred by a client for bringing
a block from persistent storage is Cstorage + Chet-
— Cserve 18 the cost incurred by a client when it serves a peer
request. We assume that the cost of sending or rejecting a
request is negligible.

We focus our analysis on minimizing application run time,
and use the following terms. The average I/O response time
of a client is the average time this client waits for a block
required by its application. The service delay is the total delay
imposed on a client’s computation while the CPU is busy
serving peer requests. To compute the average service delay,
we divide the client’s service delay by the number of its own
block accesses. The average I/O delay is the sum of average
I/0O response time and average service delay. It represents the
average time a client “wastes” on I/O operations. The server

IPossible reduction in hit rate as a result of cooperation is incorporated into
the utility of the private cache with cooperation.

2In the following, we use the term ‘application’ to distinguish it from the
service caches perform when sharing their data blocks.



is centrally owned, and is therefore not considered a selfish
entity. Its objective is to minimize the overall I/O delay in the
system.

III. CACHING APPROACHES

We first describe state-of-the-art caching approaches opti-
mized for multiple clients. We use those approaches to define
the baseline performance achievable without cooperation. We
then describe our cooperative approaches. We suggest four ap-
proaches for coordination and management of the cooperating
clients, with an increasing degree of selfishness. A cooperative
caching algorithm is composed of two logical components. The
cache management component is responsible for allocation
and replacement. The cooperation component is responsible
for selecting peers to REQUEST blocks from, and for deciding
whether to SERVE or REJECT peer requests. Parts or all of
the logic of the different components can be implemented at
the server or the clients, depending on the algorithm. Figure 4
summarizes the characteristics of our cooperative policies, and
places them on the scale between selfish and altruistic.

A. Noncooperative Approaches

The purpose of cooperative caching is to improve cache
utilization by exclusivity — eliminating data redundancy be-
tween client caches. Therefore, our cooperative approaches are
also designed to eliminate redundancy between the client and
server caches. To evaluate their efficiency, we compare them
to three non-cooperative approaches that vary in their degree
of exclusivity.

With LRU replacement, the least recently used block in
the cache is evicted to make room for a new block. LRU is
an inclusive policy, thus blocks can be stored in both client
and server caches. The second policy, ARC [33], distinguishes
between new blocks that are stored for a trial period in the L1
list, and useful blocks that have been seen more than once and
are stored in the main, L2 list. Metadata of recently evicted
blocks is stored in a dedicated ghost cache. In ARC, the server
is responsible for achieving exclusivity: when serving a READ
request, it probabilistically decides whether to cache the block,
or to PROMOTE [34] it to the requesting client’s cache. The
PROMOTE operation does not incur an additional cost over the
cost of the READ request that triggered it.

The third policy, M C? [35], uses application hints to
divide blocks into ranges, each with a known access frequency
and pattern. Cache partitions are allocated to ranges in one
of the cache levels, according to the access frequency of their
blocks, and managed according to their access patterns. Clients
achieve exclusivity by using two operations: they DEMOTE [36]
evicted blocks by sending them to the server for second level
caching. In addition, they request some blocks by using READ-
SAVE (instead of READ), indicating that they do not wish to
store them, instructing the server to keep them in its cache.
Demoting a block requires an additional network transfer, thus
the cost of DEMOTE is C,;. In contrast, READ-SAVE incurs
the same cost as the READ it replaces.

B. Cooperative Distributed Hash Table

C-DHT is constructed for perfectly altruistic clients. It
serves to test the applicability of distributed storage techniques

to caching. The cooperation component generates a hash key
for each block, and distributes the key space evenly so that each
client is responsible for an agreed upon portion of the keys,
as in Chord [37]. Clients request blocks from the responsible
peer, which in turn always serves requests that hit in its cache.
If a request is rejected, the client fetches the block from the
Server.

Cache management is based on Demote [36], the exclusive
version of LRU, with the restriction that clients only store
blocks they are responsible for. When a block is requested by
a peer, it is moved to the MRU (most recently used) position, as
if it was locally accessed by the client. If a client is responsible
for more blocks than can fit in its cache, then the LRU blocks
are DEMOTED to the server upon eviction. The server only
stores blocks DEMOTED to it, or blocks requested by clients
not responsible for them. This guarantees perfect exclusivity
between all caches in the system.

Clients dedicate a small, private, portion of their cache
to an LRU partition of recently accessed blocks. This allows
clients to duplicate blocks other clients are responsible for, if
they are now being used repeatedly. We experimented with
various sizes of this partition, but omit the details for lack of
space. We fixed its size at 3 blocks for the TPCH workloads,
and at 20% the size of the client cache for the OLTP and video
workloads. Alternatively, this size can be adjusted dynamically
at run time [38].

C. Peer-to-Peer Cooperative Caching

C-P2P is constructed for moderately selfish clients.
It adapts peer-to-peer techniques, and specifically BitTor-
rent [20], to storage caching. In BitTorrent, peers query a
dedicated tracker to learn about other peers downloading the
same file. The set composed of such peers is called a swarm.
Peers upload data to peers in a tif for tat manner, favoring
peers that upload to them.

In C-P2P, the server tracks accesses and DEMOTES to each
block range. All clients that currently cache blocks from each
range compose its swarm. Clients periodically query the server
for the swarms of the ranges they currently access. On a
cache miss, a client requests the block from a random peer
in the swarm of the block’s range. If the request is rejected,
then another random peer is chosen from the swarm. If max,,
requests are rejected, then the block is fetched from the server.

As in BitTorrent’s tit for tat policy, clients maintain a
counter which serves as a credit balance with each of their
peers. A peer’s balance is incremented whenever a block is
received from that peer, and decremented whenever a block is
sent to that peer. Clients serve peer requests that hit in their
cache only if that peer’s balance is within limits. A non zero
account limit allows peers to initialize cooperation in the first
place, as the receiving peer may accumulate some negative
credit. Similarly, a peer may accumulate positive credit to use
for future requests.

Cache management is based on Demote, and peer requests
move blocks to the MRU position in a client’s cache. Blocks
received from peers are stored in a private partition similar to
that in C-DHT. Thus, replication is limited by the size of the
private partition. In that sense, clients participate in a global
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Figure 4. Cooperative altruistic
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optimization when they cooperate. The metadata of a block
received from a peer is stored in a dedicated ghost cache. If a
block misses in the client cache but hits in its ghost cache, then
the first REQUEST is sent to the peer that previously supplied
the block. The size of the ghost cache equals that of ARC.

D. Cooperative ARC

C-ARC is constructed for strictly selfish clients and min-
imal server involvement. Clients store blocks in L1 or L2
according to ARC, without distinguishing between blocks
received from peers or from the server. When a peer request
for a block hits in L2, it does not alter the block’s LRU
position. However, when a block from L1 is sent to a peer,
it is discarded. This serves as extending the trial period to all
the peers, while avoiding duplication of blocks that are not
necessarily useful. We consider the clients in C-ARC more
selfish than those in C-P2P because they maintain control of
their cache content, replicating their own useful blocks.

Clients use the ghost cache maintained by ARC to store
information about the peers that previously supplied recently
evicted blocks, and attempt to request these blocks again from
the same peer. If the request misses in the ghost cache, or if
this peer no longer stores the block, a random peer is chosen
to request the block from. As in C-P2P, max, attempts are
made to receive the block from random peers before the block
is fetched from the server. Clients maintain a credit balance
with each of their peers, as in C-P2P, and serve peer requests
that hit in their cache as long as this balance is within the
predefined account limit.

E. Utility Based Cooperative Caching

C-Util represents the rightmost end of the selfishness
scale (Figure 4), where clients use explicit utility calculations
to cooperate only when their performance is guaranteed to
improve. Clients use information, hinted or derived, about their
future accesses, and are willing to share it with a trusted central
server. The cooperation component at the server uses this
information to construct a configuration that determines, for all
clients, which blocks to store and which peers to serve. Each
client is associated with an account balance, which is updated
upon serving or receiving blocks. The cooperation component
ensures all participating clients benefit from cooperating by
keeping their balances close to zero. The configuration is
updated periodically according to measured behavior or client
updates.

Initialization. Cache management in C-Util is based on
MC?, and assumes that each client C' can estimate, for each
block range R it accesses, F(R), the frequency of accesses
of C to blocks in R in a given time frame®. Initially, each

3The application hints used in M C? can be converted to these frequencies
by normalizing them according to the client computation speeds. They can also
be updated periodically according to the observed relative access frequency
of the clients.
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client computes the utility it can derive from storing ranges in
its cache without cooperating with others. Namely, the utility
from range R is Csiorage X Fc(R), the cost of storage accesses
saved by storing RR. The base utility of a client is the sum of
utilities from the ranges this client would store in its cache
according to M C?. Clients agree to cooperate only if their
expected utility is greater than their base utility.

The client access frequencies are communicated to the
server, which initializes a non-cooperative base configuration,
where the cache content of all clients is determined according
to M C?. The base configuration serves as an initialization for
the construction of a cooperative configuration according to
the following guidelines.

Balanced Credit. Each client is associated with a counter,
incremented whenever this client serves a peer request and
decremented whenever it receives a block from a peer. This
credit balance is maintained without distinguishing which
peers the client serves. A very high credit balance indicates that
the corresponding client has invested too much of its resources
in helping others without getting enough in return, and is
therefore undesirable. A very low (negative) credit balance is
also undesirable because it indicates that the corresponding
client has enjoyed the help of others without contributing its
own resources. Therefore, the cooperation component keeps
client balances within a predefined account limit, attempting
to keep them as close to zero as possible.

Maximal Utility. (C, R, P) is a cooperation transaction in
which client C' agrees to store range R and serve all requests
for blocks in that range originating from peer P. The utility
of P from this transaction iS (Csiorage — Cnet — Csend) X
Fp(R), corresponding to the cost of storage accesses saved
by receiving R from C, less the cost of receiving R from C
and the cost of performing a corresponding amount of SERVES
in order to accumulate the credit necessary for the transaction.
The utility of C' from the transaction is identical. Although in
the current transaction C' only performs work, it accumulates
credit that it will use in another transaction as the receiving
peer. Thus, when the value of the credit balance is taken into
account, and as long as balances are guaranteed to stay within
limits, both the serving client and the receiving peer benefit
from cooperation, and their utilities increase. The cooperation
component attempts to maximize the global utility — the sum
of all client utilities.

The cooperation component greedily constructs a cooper-
ative configuration, by iteratively adding cooperation trans-
actions to the base configuration. The final configuration
is communicated to the clients in the form of several bit
arrays. Clients populate their caches lazily according to the
configuration, fetching blocks only when they are requested
by peers or accessed by their application. Clients REQUEST
blocks from peers and SERVE peer requests according to the
cooperation transactions specified by the configuration. A high
level description of this process appears in Figure 5.



Greedy construction step

01. C' = client with lowest account balance (within limits)

02. R = range with lowest Fo(R) stored by C

03. P = peer with highest account balance (within limits)

04. R’ = range with highest Fp(R’) not stored or received by P
05. if (Fp(R) > 0) // P needs R

06. if (P does not store or receive R) or

07. ((P stores R) and // benefits from saving R’ instead:
08. (Csto'rage X FP(R,) > (Cnet + Cser'ue) X FP(R)))
09. add (C, R, P) to configuration

10. update account balances

11. // continue to next P, R, C until all options are exhausted.

Client C accesses block X of range R:

12. Cache hit:

13.  update stacks

14. Cache miss:

15. if C should store R in current configuration
16. if 3P, (P, R,C) € previous configuration)

17. REQUEST X from peer P

18. else // or if request was rejected

19. READ X from server

20. store X in cache

21. else

22. if 3P, (P, R,C) € current configuration)

23. REQUEST X from peer P // P must SERVE

24, else

25. READ-SAVE X from server / X will not be stored
Figure 5. High level pseudocode for greedy construction, lazy population

and cooperation protocol in C-Util.

The cooperation component updates the configuration
when a client provides new information which alter its utility
or whenever a client exceeds its credit limit. This can happen
because the balances are rarely exactly zero, and positive
or negative credit is accumulated in client accounts. Another
reason is inaccuracy of the access frequencies, causing clients
to serve more requests than intended by the cooperation
component. The new configuration is constructed greedily
according to the current credit balances. The clients update
their cache content in a lazy manner, similar to the initial
population.

IV. EVALUATION METHODOLOGY

In this section we describe the methodology used for our
analysis. We used trace driven simulations to evaluate and
compare the caching approaches described above. We use
two different measures to evaluate their performance, on four
scenarios of data sharing and access patterns.

A. Workloads

We experimented with several workload characteristics. In
uniform workloads, block accesses follow uniform distribu-
tions, whereas in skewed workloads, accesses exhibit non-
uniform, “long tail” distributions. Stable workloads exhibit the
same access pattern for a long period, while dynamic work-
loads change over time. In correlated data sharing, different
clients simultaneously access the same blocks with similar
access patterns and distributions. In non-correlated sharing,
clients access the shared data at different times or with different
access characteristics.

Workload TPCH TPCH OLTP Video
queries sets
Correlation varied medium strong | medium
Access type uniform uniform skewed | skewed
‘Hint’ accuracy | perfect short term | low medium
Stability stable dynamic stable dynamic
Num. requests 400K-6M | 14M M 1.8M
Unique blocks 36K-202K | 220K 45K 770K
Num. clients 2-4 2-20 2-20 50

TABLE 1. SUMMARY OF WORKLOAD CHARACTERISTICS

Database 1/O traces. We first consider a scenario in which
one data set is accessed by several applications, possibly
launched by different departments or end users. TPCH [39]
is a decision support benchmark, where queries access large
amounts of data uniformly. In our first workload, each client
runs a different query, executing multiple times, with different
search parameters. We experimented with 7 combinations of 2
to 4 clients and queries, with varying degrees of data correla-
tion between the queries. In the second workload, clients run
all 22 queries in the TPCH benchmark, but in a different order,
representing dynamic data sharing, where access patterns and
pattern combinations change continuously, and blocks turn
from hot to cold and vice versa.

We also consider a scenario of online transaction process-
ing (OLTP), such as in web auctions [40] or other e-commerce
applications. In our third workload, clients run the TPCC [41],
[42] benchmark. Utility information for M C? and C-Util was
generated in the form of application hints, using the database
explain mechanism [43]. Table I summarizes the characteristics
of our traces.

Video playback. Our last workload is composed of view-
ing requests to video sharing Web sites, such as YouTube. The
traces were collected over a period of one month, at a medium
sized ISP in Latin America (not exposed for reasons of privacy
and business sensitivity), serving both private and business
customers. We used request traces of the 50 most active IP
addresses. The duration of the video was not always available
in the traces, so we used the average values of 5 minutes and
512 Kbps for all the videos. Clients have an upload bandwidth
of 1 Mbps, as in the traced ISP’s network. Although in practice
the bandwidth between the server and the clients or the Internet
is limited, we assumed, for simplicity, that the server can serve
all clients concurrently.

Utility information for MC? and C-Util is based on
viewing history, and is generated on the fly, without relying
on external hints. We assumed the ISP cache collects access
statistics to the most popular videos. At the beginning of each
week, the server calculates the access frequencies based on
statistics collected on the last day of the previous week, for
3% of the most accessed videos on this day. These frequencies
estimate the future aggregate access distribution at the ISP, and
are not necessarily accurate for each individual client.

B. Objective Functions

We use two different objective functions that suit our
workloads. One quantifies the delay experienced by the client,
while the other quantifies the Internet accesses it incurs. We



explain how the costs defined in Section II are computed for
each of the objective functions.

Time. To compute the I/O response time and I/O delay of
database clients, we express the costs in terms of time.

— Thet 18 the time it takes to transfer a data block from one
cache to another. It represents a combination of computation,
network, and queuing delays.

— Tstorage 1s the average time spent waiting for a disk access,
including queuing and seek times. A block request from the
disk may complete in less than T;prqge if the block was
already being fetched when it was queued.

— Tyerve 1s the time the CPU spends sending a block to a
peer. During this time, the client cannot perform computation.
A client experiences a delay < T¢pp if it is idle, waiting for
I/0, when the request arrives.

Throughout our evaluation we assume that Tgerpe <
Thet < Tpisk. For our basic setup we assign Tierve
50usecs, Ther = 200usecs and T'p;s1 = dmsecs, correspond-
ing to a local network transfer of an 8KB block and the average
seek time of a SAS disk. We elaborate on more setups in
Section V-G.

Internet access. In the context of video playback, average
I/O response time is irrelevant — the video’s bit rate determines
when each frame is played, and data is buffered in advance.
Therefore, for the video workload, we measured the portion
of requested videos served from the Internet, as well as the
upload bandwidth used by the clients.

For utility calculations in C-Util, we used the relative
operational costs of the ISP where the traces were collected:
bandwidth within the ISP network (between all clients and
between the clients and the server) was 100 times cheaper
than the connection to the Internet. Although these costs
represent the objective of the ISP and not of the individual
clients, we assume they can be incorporated into the clients’
service level agreements. Therefore, it is reasonable to base
the clients’ selfish decisions on this metric. Thus, C,e; = 1
and Csiorage = 100. Cyserve = 0, because the transfer
within the ISP network is accounted for in C,,.;. In addition,
uploading a video to a peer does not affect the client’s viewing
performance. However, the client’s limited upload bandwidth
(1 Mbps) limits the number of concurrent peers it can serve.

C. Simulator

We used a simulation environment to experiment with
a variety of storage configurations, described in detail in
Section V. We used a simulator that was used in previous
studies [35] and manages 1/O event queues for all clients and
caches in the system. It computes the time each event spends
in each queue, taking into account the interactions between
requests in different queues.

We ran our simulations with a wide range of client cache
sizes. We assumed that all clients have the same cache size.
For the database traces, the size of the server cache is the same
as one client cache, and the sizes are expressed as a fraction of
the data set size in each experiment, to capture the interaction
between the two. For the video traces, we fixed the server
cache size at % GB per client, and varied the size of the client
caches from i GB to 8 GB. Note that in the context of Web

caching, this storage need not necessarily be entirely in RAM.

V. EVALUATION

Clients that serve peer requests invest work, and possibly
valuable cache space, hoping to avoid expensive disk or
Internet accesses. Our goal is to evaluate whether cooperative
caching is helpful with selfish clients, and the effect the degree
of selfishness has on performance.

A. TPCH query sets workload

Figure 6 shows the average I/O delay incurred by the
different policies on the TPCH sets workload (due to space
limitations, we present here results only for setups with 2
and 20 clients). All clients run the same set of TPCH queries
in different order, resulting in a dynamic mix of workloads.
Clients recalculate their utilities whenever their workload
changes. Since the changes in workload are small and there
is considerable data sharing between the clients, coopera-
tion always improves performance. However, the different
approaches exhibit different behavior.

When the consolidated client cache is smaller than the
data set (small client caches or few clients), selfish clients
perform better because they keep their most important blocks
in their private cache. C-Util, the best approach in this case,
reduces the average 1/O delay by as much as 32% for 2 clients
and a cache size of é. Without utility calculations, C-ARC
provides the best cache management, reducing the average 1/0
delay of ARC by as much as 15%. With large caches, clients
cooperating altruistically perform better because they manage
to fit the entire data set in the consolidated client cache, thanks
to exclusivity. C-DHT reduces the average 1/O delay of ARC
by as much as 87%, with caches of size Tle and 20 clients.

Selfish clients fail to achieve perfect exclusivity with large
caches. The main reason is that clients duplicate frequently
accessed blocks and don’t rely on their peers to supply them.
In C-ARC this also interferes with locating less frequently
accessed blocks — a peer that served them before is not
obligated to store them for future accesses. Additionally, C-
P2P and C-ARC are limited by their credit balance. A client
that accumulates credit with some peers is unable to “cash” it
if different peers hold the blocks it needs, and has to replicate
those blocks in its own cache. The aggregate credit balance and
the configurations constructed by the server in C-Util address
these issues.

In contrast, clients in C-Util refuse to cooperate when
they think they have nothing to gain. A client will decline
a cooperation opportunity if the blocks it can fit in its cache
as a result are not valuable enough. In the dynamic query
set workload, clients do not wish to store blocks they will
access only when their workload changes. With a cache of
size % and 20 clients, the benefit of C-Util, the best selfish
approach, is 41% less than the benefit of the altruistic C-DHT.
This limitation can be addressed in two orthogonal ways. First,
if the application can supply hints about future workloads, the
client can incorporate them into its utility function. Second, the
system can pay “extra credit,” i.e., by means of SLA benefits,
to clients that store blocks they don’t currently need. Such
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incentive schemes are addressed by Algorithmic Mechanism
Design [44].

Figure 7(a) shows, schematically, that cooperation is al-
ways beneficial with large caches and uniform, strongly corre-
lated workloads. Our results show that client selfishness limits
the benefits from cooperation in such scenarios, corresponding
to Rule 1 in Figure 1.

B. TPCH query combinations workload

In our last workload, each client runs one query repeatedly,
with varying parameters, as explained in Section I'V-A. In such
a scenario, the access frequencies are highly accurate, and the
stability of the working sets provides good opportunity for
cooperation. Figure 8 shows the average I/O delay incurred
by the different cache management policies on three clients
running TPCH queries 3,10 and 18. These queries access
the same database tables with different priorities and access
patterns.
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Cooperation almost always improves performance with
this workload, with different behaviors exhibited by different
caching approaches. C-DHT and C-Util achieve the best per-
formance improvements with exclusive caching. In C-DHT,
exclusivity results from dividing the hash key space statically
between clients. In C-Util the server constructs exclusive con-
figurations, with minimal replication of very popular blocks.
Similar to the query set workload, this replication is especially
important when caches are small. The other policies, C-P2P
and C-ARC achieve significant improvement over their non-
cooperative versions only when the caches are almost as large
as the entire data set. Their selfishness, combined with lack of
central management, causes excessive data replication.

Figure 7(b) depicts the trend we observed in this workload;
the most selfish and the most altruistic approaches achieve the
best results for non-correlated workloads — these approaches
include explicit block allocation and do not depend on cor-
relation between clients. Cooperation with approaches in the
middle of the scale that lack explicit block allocation, provides
only modest performance improvements. While each query
combination resulted in a different access pattern and priority
miXx, the overall conclusion from all combinations (summarized
in Figure 9) was the same, corresponding to Rule 2 in Figure 1.

C. Video workload

Figure 10(a) shows the portion of videos that can be served
without accessing the Internet, when the different caching
approaches are used. Cooperation in the video workload does
not affect viewing performance, since it does not utilize the
client’s download bandwidth. Additionally, viewing a video
directly from a peer cache is equivalent to viewing it from
the server, as long as bandwidth limitations are not exceeded.
Therefore, cooperation is always beneficial in this workload.
The selfish C-Util is the best cooperative approach, improving
its relative performance as cache sizes increase. It achieves
a hit rate as high as 32% with 8 GB - an increase of 10%,
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14% and 44% over the hit rates of C-P2P, C-DHT, and LRU,
respectively*.

C-DHT performs well with small caches, but its perfor-
mance remains constant even when client cache sizes increase
beyond 4 GB. This is the result of combining altruistic
behavior with uncorrelated accesses. At 4 GB, the popular
videos are already stored in the cumulative client cache, but
unpopular videos fail to “enter” it: unpopular videos are often
not accessed by the client responsible for them, and are
therefore repeatedly fetched from the server.

Figure 10(b) shows the average upload bandwidth con-
sumed by individual peers. The error bars, depicting standard
deviation, show the load distribution between clients. The per-
peer credit balances in C-P2P ensure even distribution, but
also limit cooperation opportunities. C-Util is more susceptible
to imbalance, but, surprisingly, achieves better load balancing
than the hash keys in C-DHT. Clients using C-Util selfishly
replicate extremely popular videos, while in C-DHT, arbitrary
peers become “hot spots.”

With small caches (%-% GB), the roles are reversed. Small
caches can store only the most popular videos, which are
easily recognized by LRU. C-DHT is the best cooperative
policy in this situation, outperforming C-Util. Although the
most popular videos are identified by the access frequencies,
the workload changes faster than the frequencies are updated.

Videos which are most popular when utilities are computed

4ARC, and subsequently, C-ARC, are specifically optimized for storage 1/0,
explaining their inferior performance on these traces. We present their results
for completeness, but omit them from the discussion.

12 1 2 3 4
Client cache size (GB)

5 6 7 8

Client cache size (GB)

(b) Average client upload

thus become less popular as new videos appear in the work-
load, but still consume a large portion of the cache (this also
explains M C?’s poor performance on this workload). Larger
caches mask this “error” and store both old and new popular
videos.

Figure 7(c) schematically shows that cooperation is always
helpful when its cost is negligible, even with long tail distri-
butions and medium data correlation. Selfish considerations
improve performance in this case, corresponding to Rule 3 in
Figure 1.

D. OLTP workload

Figure 11(a) shows the reduction in I/O response time
achieved by cooperation between 20 clients running the OLTP
workload (the results are similar for fewer clients). This
workload has great cooperation potential — clients run the same
workload continuously, so their data set is stable, and they
agree on block priorities. Thanks to the skew in block accesses
and strong temporal locality, all cooperative approaches reduce
the average I/O response time. Clients gain access to a larger
portion of the data without accessing the disk. However, this
measure does not take into account the work clients invest in
serving peers.

The cost of serving peers, the service delay, is depicted in
Figure 11(b). Comparing Figure 11(b) to Figure 11(a), it is
evident that the time saved by avoiding the disk accesses is
less than that spent serving other peer requests. The workload
skew causes the space freed in client caches to be used for
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infrequently accessed blocks, whose utility does not mask the
cost of serving popular blocks to peers.

The average I/O delay takes this cost into account. Fig-
ure 11(c) shows that the cooperative policies almost double the
I/O delay of LRU in the large cache sizes. This demonstrates
the importance of explicitly addressing the cost of service
when evaluating the benefits from cooperation.

The solid line in Figure 7(d) represents our conclusion
that with non-negligible cost of SERVE and high access skews,
cooperation always degrades performance. However, the sim-
ilarity between altruistic and selfish approaches is counter
intuitive. We expected the behavior to resemble that depicted
by the dashed line, indicating that selfish clients refuse to
cooperate if their utility decreases.

Specifically, the utility calculations in C-Util were sup-
posed to help it detect that cooperation is not beneficial
with OLTP (Figure 11(c)). However, when block ranges are
accessed in a nonuniform distribution, the overall utility of
the range does not accurately reflect the utility of each of
its blocks. With M C?, clients selectively store only the more
frequently accessed blocks within such ranges [45]. However,
with C-Util a client agrees to be responsible for a range, and is
obligated to store its low priority blocks as well, at the expense
of its own performance. Rule 4 in Figure 1 states that when
non-uniform accesses are combined with inaccurate hints and
non-negligible cost of SERVE, cooperation should be avoided.
To detect such situations, clients relying on application hints
may use online statistics, and refuse to cooperate until their
workload changes.

E. Lookup Mechanisms

Lookup mechanisms for distributed caches have been sug-
gested in previous studies [14], [15], [18], [46], and were
not the focus of our evaluation. However, insufficient lookup
capabilities limit cooperation. While C-DHT and C-Util have
built-in mechanisms that do not incur additional overhead,
cooperation with C-ARC and C-P2P is limited by max,, the
number of peers a client is allowed to query before requesting
a block from the server. When we increased max,, their
performance improved continuously. The average I/O delay
of C-ARC and C-P2P decreased by as much as 63% and
76%, respectively, when mazx, equaled the number of peers.
Querying all the peers in the system is clearly infeasible in

a practical implementation. Instead, such policies should be
augmented by some external mechanism to fully utilize the
cumulative caches.

F. Account Limits and Selfishness

The willingness of clients to cooperate is determined by
their credit balance limit. Recall that clients using C-P2P and
C-ARC SERVE peer requests only if their corresponding credit
balance is within limits. In C-Util, the aggregate credit balance
maintained by each client restricts the cooperation transactions
added to the configuration. We varied the aggregate account
limits in order to evaluate their effect on performance. As
we increased the balance limit, we expected performance to
improve as a result of additional cooperation opportunities,
and the load balance to degrade as a result of increased credit
accumulation. This was indeed the case in almost all policies
and workloads, although the effect was minor. The difference
in average I/O delay was 0%, 1%, and 3% on average, with
C-ARC, C-P2P and C-Util, respectively.

With C-Util, increasing balance limits improved the load
balance, because clients had more opportunities to “cash” the
credit they accumulated. However, in some cases, the 1/O
delay increased because, due to the insufficient accuracy of
the access frequencies, clients agreed to cooperate on less
valuable blocks, whose utility did not mask the additional cost
of serving peers.

Account balances have a fundamental role as incentives for
selfish clients to cooperate. Their non-zero limits allow clients
to initiate their cooperative transactions. In existing peer-to-
peer systems, proper incentives are the main contributor to
the overall system’s performance [47], [48]. In contrast, our
analysis shows that in the context of cooperative caching,
the precise value of account limits has little effect on the
performance of most cooperative approaches, especially when
compared to cache management and lookup capabilities. Thus,
an existing peer-to-peer mechanism cannot be applied “as is”
to a cooperative caching system — it will not guarantee per-
formance improvements without a suitable cache management
algorithm.

G. Storage Access Costs

The benefit from cooperation between clients, like that
of other techniques that incur space [34] and transfer [36]



overhead, is sensitive to the storage access cost. We evaluated
this sensitivity with several storage setups. While the rest of
our results are for a high performance SAS disk, here we
consider a SATA disk drive, representing long access delays,
an SSD drive, representing short delays, and a controller with
DRAM storage, representing high-end fast storage access [49].
Figure 12 shows the performance of the best two cooperative
approaches on these setups.

We expected the benefit from cooperation to increase with
Tstorage- Indeed, with the SATA drive all policies benefit
more from cooperation than they do with SAS. In fact, since
Tserve was so much smaller than Ty;4.q4¢, the cooperative
policies were able to improve performance even with the OLTP
workload (not presented for lack of space), corresponding to
Rule 3 in Figure 1.

We also expected some benefit from cooperation with
faster storage, as long as Tserve < Tstorage- In practice, all
cooperative policies except C-Util increased the average 1/0
delay, for all our workloads, both with SSD and with DRAM.
Cooperation improves exclusivity and frees up cache buffers,
but these buffers are populated with blocks that are accessed
less frequently. Thus, disk accesses saved are fewer than the
number of peer REQUEST and SERVE operations, canceling
any benefit from cooperation. C-Util suffers less as a result
of decreases in Tstorqge because clients estimate their utility
based on the access costs and selfishly avoid cooperation in
those setups.

H. Upload Bandwidth

To evaluate the effect of the upload bandwidth bottleneck,
we varied it from 1 Mbps to 4 Mbps. Recall that serving a peer
request consumes 512 Kbps of the client’s upload bandwidth
for the duration of the video. At 2 Mbps, the average load
on the peers increased by a maximum of 0.15%, 2%, and 9%
for C-DHT, C-P2P and C-Util, respectively, while the number
of Web accesses decreased by 0.01%, 0.1% and 1%. Further
increasing the bandwidth to 4 Mbps had no effect. We conclude
that while upload bandwidth was a bottleneck for C-Util, the
dominating factor in the performance of C-DHT and C-P2P
was the hit rate in the client caches.

VI. OTHER DESIGN CONSIDERATIONS

Write traffic. Data sharing between multiple clients in-
troduces conflicts when the workloads include WRITE traffic,
requiring explicit cache coherency protocols to ensure correct-
ness. Cooperative caching in itself does not introduce addi-
tional coherence issues. The precise effect of write traffic on
cooperative approaches is out of this paper’s scope. However,
some are more suited to handle write traffic than others.

Approaches with built-in lookup mechanisms which ensure
exclusivity, such as C-DHT and C-Util, can easily be aug-
mented with a cache coherency protocol — a client responsible
for a group of blocks can be in charge of their master copies.
Policies such as C-P2P, which allow replication only through
access to the shared cache, do not introduce coherency issues
beyond those of a shared server cache. However, clients that
selfishly replicate SERVED blocks, as in C-ARC, present an
additional challenge.
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Figure 12. Increasing storage access costs increases the benefit from
cooperation. 20 clients run the TPCH query sets with SATA, SAS, SSD,
and DRAM drives, where Tstorage equals 10ms, 5ms, 260us and 120us,
respectively. Tserve is 50ps. We omit the network cost because it is also
incurred by requesting a block from a peer.

Multiple Servers. Clients in large, consolidated systems,
may access data from multiple storage servers with heteroge-
nous access costs. The cache replacement mechanism in such
clients must take these costs into account when deciding which
block to evict. This is equivalent to allocating a separate cache
partition to blocks from each server, and dynamically adjusting
the sizes of these partitions [50]. While the replacement
decisions alone are orthogonal to the cooperation protocols,
clients in all cooperative approaches should have some means
of identifying peers that access the same servers they do.

Clients that adhere to a configuration constructed by the
server, as in C-Util, cannot adjust their partition sizes inde-
pendently. Instead, we suggest that partitions be adjusted only
at the end of predetermined time frames. Each server will
construct its configuration for the next time frame according to
the adjusted size of its respective partitions. The configurations
of the different servers do not interfere with one another — they
guarantee utility in independent cache partitions. Clients may
use these utilities to determine their partitioning in subsequent
time frames.

Trust. Clients in our model trust their peers in terms
of data integrity and adherence to caching and cooperation
protocols. In realistic environments, malicious behavior can
have a detrimental effect on cooperating clients. There, existing
protection mechanisms can be added to the cooperative ap-
proaches we presented. For example, Shark [51] uses encryp-
tion and opaque tokens to enable cooperation, CloudViews [6]
suggests unforgeable tokens to ensure privacy in data sharing
scenarios, and credit balances can prevent free riding, where
peers maliciously receive service without contributing their
own resources [20].

VII. RELATED WORK

Traditional storage caching approaches assumed altruistic
clients in centrally managed systems. Most of them consider
the global system’s optimization as the only objective [15],
[17], [18]. Some exploit locality of reference within a client’s
workload by allowing the clients to manage a private LRU
partition [14], [38]. None of the above approaches consider the
delay incurred by a client serving peer requests. Our results



show that this delay may mask, or even exceed, the delay saved
by cooperation.

Recent cooperative caching studies address load balancing
between clients. Experiments with the Shark network file
system [51] show significant differences in the bandwidth
served by different proxies. In NFS-CD [52], the load of
serving popular files is split between “delegates” when it is
detected. LAC [16] equalizes cache utilization between all
clients. Similarly, distributed storage systems [37], [53] and
NoSQL databases [54] use hash keys to evenly distribute
replicas and load between servers.

Load distribution, or “fairness”, is not enough in heteroge-
nous environments, where cache owners are autonomous and
have selfish objectives. Customers that have paid for resources
are expected to share them only within frameworks that guar-
antee “return on investment”, and are likely to prefer platforms
that guarantee their objectives are met. We have demonstrated
that cooperative caching is possible and beneficial despite these
limitations, as long as the selfish objectives are considered
explicitly.

Peer-to-peer (P2P) systems constitute a large number of
independent, autonomous peers, and an incentive mechanism
which motivates peers to invest resources in serving oth-
ers. System efficiency is evaluated by measuring its global
throughput. In BitTorrent [20], peers upload data to other
peers in a tit for tat manner. The reputation system in [22]
enhances this mechanism. Alternatively, currency and balance
based mechanisms are used for packet forwarding [23] and
multicast [21] in ad hoc networks.

In such systems, peers cooperate according to their lo-
cation or group assignment. However, these are short-term
cooperative transactions that usually involve a single operation.
Our analysis shows that incentives alone do not guarantee
performance benefits in stateful systems such as caches. To
benefit from cooperation, clients must use a suitable cache
management algorithm that allows them to evict blocks from
their cache, and rely on their peers to store these blocks and
provide them when requested, for an agreed upon period of
time.

Auction based mechanisms were suggested for managing
resources in distributed systems [30]. Similarly, economic
models for setting the price of services on a supply-and-
demand basis were suggested for job scheduling in grid
systems [3]. These models capture the interaction between
conflicting objectives of different entities, and allow for long-
term agreements. However, the resulting mechanisms are pro-
hibitively difficult to implement and carry significant compu-
tation and network overheads. Similarly, other models such as
cooperative game theory or detailed market models, are gener-
ally computationally hard, and do not guarantee a stable system
state [24]. In contrast, the selfish cooperative approaches we
presented provide sufficient incentives for selfish caches to
cooperate while employing only simple or greedy heuristics.

VIII. CONCLUSIONS AND FUTURE WORK

Resource sharing is becoming increasingly popular, en-
tailing significant benefits for users in large scale distributed
systems. Cooperative caching has long been suggested as a

means to increase cache utilization and improve performance.
In consolidated systems, and particularly in infrastructure-
as-a-service clouds, it can also reduce operational costs by
enabling dynamic resource scaling. We introduced a new
model for cooperative caching in such environments, where
clients are selfish and cooperate based on their expected return
on investment.

We proposed four cooperative approaches for clients of
varying degrees of selfishness. Our analysis shows that when
applied correctly, cooperative caching can greatly improve
performance in many system and workload combinations.
However, in some scenarios, imposing cooperation can sig-
nificantly degrade performance. We summarize our findings
in the form of basic guidelines for identifying when caches
should cooperate, and how.

Our guidelines and basic cooperation schemes can be com-
bined into a general management policy that will automatically
detect whether cooperative caching can improve performance,
and recommend (or apply) the most suitable scheme according
to the workload and system characteristics. This high level
policy can also detect workload and topology changes, and
instruct clients how to adjust their behavior accordingly.
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