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Abstract the cache and render it utterly useless. Thus, they often

St ‘ desianed and optimized rel _receive special attention in workload analysis [11].
orage systems are designed anc optimized re ylngExisting studies have been focusing on the same at-

on wisdom derived from analysis studies of file'SySte'Pributes and characteristics for many years. The stor-

and block-level workloads. However, while SSDs are be- . . :

: . - . age landscape is changing, however, as flash-based solid-
coming & dominant building block in many storage SYS5tate drives (SSDs) are gradually replacing hard disks
tems, their design continues to build on knowledge de- g y rep 9

rived from analysis targeted at hard disk optimizatio n many data centers. Although they present a similar

. . ! slock interface, SSDs differ from hard disks in several
Though still valuable, it does not cover important aspects :
ays. The most notable are their fast random access,

relevant for SSD performance. In a sense, we are “search- . .
) - . oo asymmetric read and write performance, and out-of-place
ing under the streetlight”, possibly missing important op- . . . . .

" S ; writes, which require dynamic mapping between logical
portunities for optimizing storage system design.

. : . nd physical locations as well as garbage collection, both
We present the first /0 workload analysis des'gneanplemented in the flash translation layer (FTL).
with SSDs in mind. We characterize traces from four . S
o . - : Consequently, SSDs have different optimization goals
repositories and examine their ‘temperature’ ranges, Setﬂ-an hard disks. For example, rather than organizing data
sitivity to page size, and ‘logical locality’. Our initiakr ' P'e, 9 9

sults reveal nontrivial aspects that can significantly 'mfluto optimize for fast sequential reads, data is organized on

ence the design and performance of SSD-based systen?s?ps .W'th the objective of.maX|m|2|ng parallelism and
minimizing garbage collection overheads. The need for

. dynamic mapping leads SSD optimizations to target data
1 Introduction movement, rather than data placement [4, 20]. At the
Characterizations of file-system and block-level worksame time, FTL design allows for complex optimizations
loads are often used in the design and optimization @nd fast adjustment to workload changes.
various levels of the storage stack. Aspects such as fileThis shift in storage device optimization calls for a new
and object placement, metadata management, replicationderstanding of I/O workloads. Although existing anal-
caching, array configuration, and power management ayges are still useful, they were designed for optimizing
optimized according to our understanding of the targédtard disks. Even analyses and discussions made in the
workloads. The storage community has invested considentext of SSD optimization [14, 17] consider traditional
erable effort in studying storage workloads. These studi#zetrics such as working set size, request rate, and inter-
naturally focus on those aspects of the workload relevargference gaps. Relying only on aspects relevant for hard
to optimization of the underlying storage component. disk optimizations means we might be “searching under
Analyses of file-system workloads examine the dighe streetlight,” missing interesting attributes or ph@no
tributions of file size, age, and functional lifetime, cor€na relevant for SSD performance, as well as opportuni-
relating them with file extension and directory structies for optimizing the entire storage system.
ture [3, 12, 16]. On the other hand, 1/0O workload anal- This work is a first attempt to characterize 1/0 work-
yses focus on factors crucial for the managing low levébads with SSDs in mind. We analyze over one hundred
devices and servers: inter-reference gaps, working gedces from four public repositories [1, 7, 9, 13], with the
sizes, and access skew are relevant for cache manageal of identifying characteristics relevant to SSD design
ment, while request sizes, idle and inter-arrival timeand performance. We considemperature range (rather
and read/write ratio are important for hard disk perforthan just the amount of “hot” data they contailggical
mance [6, 7, 10, 15, 19]. Sequentiality—the portion anbbcality (rather than simple spatial locality or sequential-
nature of sequential accesses—is relevant for both: g8, and their sensitivity to increasing SSD page sizes.
guential accesses can be an order of magnitude faster ti@2ur results expose nontrivial characteristics with substa
random accesses on hard disks, but they can also polltitd implications for SSD design and performance.



Repository: UMass MSR MS-Prod FIU

Num traces 36 34 43 9

Write regs (M) 0.01-0.4 0.01-58 0.01-9 1-41 — 102

Median write size| 1-48KB 4-64KB 1-64KB 4KB 2

Duration 12hours 1lweek 6-24hours 3 weeks =

Volume size (GB)| 0.07-650 8-820 9-3200 8-40 Z 10

Server categoriess DB dev, file DB, dey, file file, mail é

web mail,web web 10° = =
Table 1:Trace repositories. Additional details are available i 0 DBMS dev mail 2 4 8 12 16 24 32
the original publications [1, 7, 9, 13]. files web Max partitions N
(a) Required partitions (b) Lowest ratio

2 Workloads Figure 1: (a) Required number of partitions fof;<2.

We analyze block-level traces of storage workloads froff) fmin(N) when restricting the number of partitions.

four online repositories: the University of Massachuset?

. : er of partitions they require. We also aim to quantify
(S.PC traces) [1], M'CrOSOft Research at Caf.“b”dge [13 he cost of allocating fewer partitions when the optimal
Microsoft production servers [7] and Florida Interna-

tional University [9]. We focus on standard attributesnumber 's too high. We are specifically interested in the

: . ) . : "common case of two partitions, for hot and cold data.
available in all these traces: request arrival time (redati Definitions. When a logical page is written to an SSD
to the beginning of the trace), volume, offset (in byte§h ' 9 bag '

relative to the beginning of the volume), request size (Igned 'ZLIC‘):;Z‘;k; gﬁipr:xg):s ?:gg'f:uﬁf:tt'ﬁg az Igvt?)“de{c-
bytes), and I/O operation (either read or write). P P page 1o,

The focus of our analysis is the block-device Ievelcordmg to its striping the load balancing schemes. It

. . then writes the page to aactive block in the plane—a
Thus, in workloads that access multiple volumes attach%(ijock that has been erased and was not fully written yet
to the same server, we analyzed each volume as a s '

o \ paratin intp logical partitions requir iV
arate trace. Our analysis includes only traces with %ﬁiﬁisai; ega(iatzl a;g ogical partitions requirep active

least 10’00.0 requests and at least 5’0.00 write reques sI’:ollowing the notation of Stoica and Ailamaki [18], let
122 traces in all. As part of our analysis, we categorlz‘f

the workloads according to the server’s function. Table ,L)?]E:,\,tglitépgg;?;rsquaeng \?Ji tﬂiﬂgg;?::ﬂy’ di\atlgf]rgatrjtle-nc
summarizes the characteristics of each repository. pag P 9 Y-

This is clearly unrealistic, as modern chips have as few as
512 blocks per plane [2]. Instead, logical pages with sev-
eral access frequencies are grouped into each partition.
Workload skew is traditionally leveraged to optimize perket f;(p) be theupdate frequency ratio in partition p,
formance by use of caches. If the cache is large enouglhich is the ratio between the maximum and minimum
to store the application'working set, it can serve most update frequencies of pages storecpinf, denotes the
requests without accessing the underlying storage. In thitaximal ratio across all partitions. Ensurifig<2 is suf-
context, rules of thumb such as the 80-20 rule, whicticient for minimizing garbage collection overhead [18].
states that 80% of requests access 20% of the data, ar&lethodology and results. To see whether this op-
often used to estimate the required cache size for a wottimization is realistic given modern chip organization,
load. Thus, traditional analyses characterize the skew wk calculate the number of partitions required to ensure
a workload by assessing its working set size or amount &f<2. We rank the logical sectors in each workload ac-
hot (frequently accessed) data. While those are sufficieobrding to their update frequency, and greedily assign
for optimizing hard disk and cache performance, SSD ophem to partitions: we start with the first partition, assign
timization can benefit from more detailed analysis. ing to it the page with maximal f;, as well as all pages
Motivation. In the context of FTL design, separat-{j} with f; > fi/2. We then assign the next page to the
ing hot and cold data into different logical partitions hasecond partition, and so on.
been shown to minimize write amplification and, respec- Our results show that the minimal number of required
tively, garbage collection costs and cell wear [5]. Suchartitions is evenly distributed between 2 and 16, and that
separation is also useful for other optimizations such disvaries between categories. Figure 1(a) shows the 25th,
wear leveling and page reuse [21]. Consequently, mabB@th and 75th percentiles for each category, with the ver-
FTLs separate data into two partitions. Stoica and Aikical lines showing the minimum and maximum required
amaki [18] have shown that sevetainperatures can be number of partitions for each category. For example, 9
grouped into the same partition without increasing writpartitions are sufficient for 75% of DBMS workloads,
amplification, as long as the access skew within each pavhile 75% of mail server workloads require at least 14
tition is sufficiently small. We focus on this analysis angartitions. We repeated this experiment with varying re-
characterize workloads according to the minimum nunstrictions onf;. As expected, more partitions are required

3 Temperature Ranges



Page:| O 1 2 3 Page:| O T =
3 o
A 04 03 02 01 = | A 0.7 0.3 = 102 Page Size
B 04 01 03 02 B’ 0.5 05 5 ol s1oB
Table 2:Example workloads A and B with access frequencie = Lot —— 4KB
to four logical pages and alignment to 2-page boundaries. %' —+- 16KB
o a 64KB
©
to maintain a lower ratio. The minimum number of re- £ °°

quired partitions ranges from 3 to 26 fHr<1.5, and from y
Max partitions N

2 to 11 forf, <3. .
0 orfr<3 Figure 2: Median fin(N) with different page sizes when re-

To understand the implications of these findings, cons—tricting the number of partitions.

sider a state-of-the-art enterprise SSD with 512 blocks per

plane and 28% overprovisioning. Each plane will have Motivation. While hard disk sector sizes have re-
400 available logical blocks. Thus, to maintain 16 partifnained stable for many years, SSD page size has in-
tions, 4% of the blocks must be_: aIIocated.as aptive blockt?reased rapidly, from 2KB to 1,6KB in a few years [2].
a_md on average 2% O.f the logical capacity wil be_ UnUthpis trend is expected to continue as flash feature sizes
lized. In a<_jd|ti_or_1 to this overi_ie«_ad, one ml_JSt consider trHaecrease, to allow more aggressive write optimizations
C.QSt of.maintaining and classifying pages into several Pahd bit error correction. Nonetheless, file systems con-
tions in thg SSD,S, RAN,I' . . . tinue to operate at 4KB granularity, to allow fine-grained
SSD designs might limit the number of partitions inycation and access. Mapping these 4KB logical pages
order to exploit specialized hardware, or to MiniMize Paky, |5rqer physical pages is the responsibility of the FTL,
titioning overhead. To estimate the effect of sub-optima] although many optimizations have been suggested to

partitioning, we iepeated the procedure d_escribedl aboé{ﬁeviate the overhead of this mapping, all FTLs employ
to exhaustively findfrin(N)—the lowest ratio for which ¢ 00 of logical address alignment.

the greedy partitioning scheme resultsNa-a predeter- Alignment causes accesses to two or more logical

mined number of partitions. Figure 1(b) shows the distri- . . .
bution of fyin(N) across all traces, fdd between 2 and pages to refer to the same aligned page, with two major

32. With a limit of 2 and 4 partitions, the lowest ratio Canimplic_ationg. First, pagifetime—the time between con
. : . . secutive writes to the same page—decreases, as pages are
be as high as 108@nd 33.8, respectively, with respective . -
. updated more frequently than in the original workload. In
medians 77.7 and 6.6. However, when the number of parx, ... A :
. T addition, the access distribution of the workload is mod-
titions is limited to a modest 8fyin(N) does not exceed ..~ ! oo .
) 0 ified: accesses to different pages, with different original
5, and is 2 or less for 28% of the traces.

o . . access frequencies, are now considered as accesses to the
Implications.  Previous studies have shown tha

. - ! ame larger page.
garbage collection overheads are similar for a ratio of gerpag

and for uniform accesses, and demonstrated that thesecons(')dzr' for q exar_r;plg,. tvill_obilivorzklo\z;l\(lnlsk';haz acAcessa
overheads increase considerably with higher ratios [1 ages D-s, as described In fable 2. Workioads A an
have the same access distribution and CDF, although

Though the exact impact of values as high as 5 or 77 are

yet to be determined, it is clear that separating data ia}.‘iadividual pages are ranked differently in each workload:

only two partitions is far from optimal. Our results sho ot data are clustered in a small logical address space in

that workloads and categories differ greatly in the nurﬁ/y,ork:]qarc}i A bult ?Ot in |I3 N,OW consgderwo;kloadstft ang

ber of partitions they require and in the cost of suboptima] WAIICii res#;\ rorgé‘égn'h”ﬁl Adairil Btoa l;pagel_ ound-

partitioning. This lays the groundwork for more detailedY- though A an ot a the same skew, alignment

analysis of workload skew. Increased the skew of A, yet it decreased that of B.

Methodology and results. We study the effect of in-

4 Access Granularity creasing device access granularity: for each workload and
o ) . each physical page size from 4KB to 64KB, we align the

I/0 workload granularity is determined by the page SiZ&quested logical address to page boundaries, and aggre-

qf the underlying dgvice and the access granuliarity of t’%e accesses to the same physical page. We then repeat

file system generating the requests. A sector size of 51 experiments in Section 3 for each page size.

was the default granularity for many years, and is also Figure 2 shows the median access frequency ratio when

th_e access graniilarity of all the WorkI(_)ads we examinefhe number of partitions is restricted and the page size
with one exce_ption: all the requests in vv_orkl_oads fromlaries from 512B to 64KB (the figure of the maximum
the FIU repository are of 4KB. pages, which is th_e Nooks similar). Interestingly, increasing the page size
standard size for sectors and file-system pages alike. from 512B to 4KB increases the skew considerably, but

1\e did not continue the search beyohe1000 because this value InNcreasing it further has only a minor effect. We also cal-
was encountered in only a few extreme cases. culated the number of partitions required fip<2 with
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Figure 3:Pagej written at timet” hits page written at timet. E g:‘; % f'
o o
different page sizes. Our results (omitted for lack of = 622%0000 S 7 513 8024\ =
space) show that for individual workloads, increasing the ,“)%%0“ 0 0% ,ogee'
page sizes beyond 4KB resulted in a difference of only '”’e[//os] d\""\Q

1 or 2 partitions. Some workloads behave like example
workload A for some page sizes and like B for others. (@) Full results

Implications. The implications of changes in work- = 1.0
load skew are well understood when it comes to caching = °° 1
tiering, partitioning, and other optimizations. Our ialti % gi '
results indicate that increasing the page size beyond tt 3 o,
standard operating system size of 4KB has little effector « 9o &\ —
workload skew. Analyzing the effect of increased page 0 200 400 600 800 1000 O 10002000300040005000
size on lifetime is part of our future work. Distance [pages] Time [1/Os]

i i Cross-sections
5 Spatial Localit _ ©
P Y Figure 4:Logical locality of the ‘casa’ workload (FIU).

Locality has always been important in workload analy-
sis. Temporal locality—repeated accesses to the saf@r @ given write to logical pageat timeT, we calculate
logical address—has been studied in the form of intefe ProbabilityPs 1 that a logical pagg, [i — j|<D, will
reference gaps, working set size, and functional lifd2€ written at timet’<t+T. The logical locality is given
time [7, 10, 15, 16]. Spatial locality—accesses to nearlff @ cumulative distribution table, where the value in lo-
logical addresses—is usually studied in the form of s&ation O, T) represents the expect@gr. We currently
guential access: the portion of sequential accesses dREer tovirtual time—a counter incremented on each I/O
their “run length.” Spatial locality in random accesses i§€duest. Analysis of logical locality as a function of ab-
harder to characterize, and is usually analyzed by stud§Rlute time is part of our future work.
ing the differences between offsets of consecutive re- For any predetermined and T we say that a write
quests [6, 7, 10, 15]. This is often referred to as “seelequeshits a previous write request if the time between
distance,” as the motivation for its study is to estimatéhem s less thai, and we can find a pair of pages, onein
disk arm movements when serving a given workload. each request, whose logical addresses are witpages

Motivation. Although sequential accesses are knowffom one another (see example in Figure 3).
to improve SSD throughput, we focus instead on novel Methodology and results.We calculate logical local-
characterization of random accesses in SSDs, where sjig-by defining a ‘window size’ 0Dy and Trax (1024
tial locality is critical despite the lack of moving parts.and 5000 in our experiments) and storing a sliding win-
Consider, for example, an SSD that stripes pages acraksv of the lastYyay requests in memory while travers-
chips in a RAID organization, and must update a patng each workload. When a new request hits one of the
ity page whenever a data page is written. A possibkecorded requests, we update the CDF accordingly. We
optimization is to delay parity updates until more pagegresent the logical locality in a three dimensional graph,
in the same stripe are updated, to minimize write ovewhere the axes are distand®)(and time T). Figure 4,
head [8]. To evaluate the efficiency of such optimizadiscussed below, shows an example. The graph shows
tions,one might ask, “What is the probability that anothehow P 1 increases as we increaBeandT: a new re-
page in the samaripe will be written in the near future?” quest hits older requests as we move left onfitexis, or

As another example, consider a block-mapping FTlrequests at a larger offset as we move right ortais.
which groups together pages with consecutive logical ad- Note that in the calculation described above, two or
dresses. Pages are first written to a log, and are periatlere pages written in the same request will be treated
ically garbage collected and grouped according to thedis two requests at the same time, which consequently hit
logical address. In this context, the expected probabibtne another: for every one of these padethere is an-
ity of writing to the same logicdblock can help optimize other pagei¢l, i+1 or both) written at timeé+0. This
garbage collection. often cause$p 1 to be very close to 1 for alD andT.

Definitions. We characterize thiegical spatial local- This result does answer the question of future writes in
ity (logical locality, for short) of a workload as follows. the vicinity of the current page, but it does not provide



D=16 pages

D=64 pages

Num traces

0 0.25050.751.00 0.250.50.751.00 0.25 0.5 0.75 1.0
oPp dPp 0Pp
Figure 5:Histogram oféPy for D=1,16 and 64 pages.

meaningful insight about the different workloads.

are straightforward, while others are yet to be determined.
Regardless, additional analysis is clearly due, taking int
account changing storage devices. We are continuing the
analysis described in this paper, to identify and under-
stand additional phenomena and correlations.
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