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Abstract

Storage systems are designed and optimized relying
on wisdom derived from analysis studies of file-system
and block-level workloads. However, while SSDs are be-
coming a dominant building block in many storage sys-
tems, their design continues to build on knowledge de-
rived from analysis targeted at hard disk optimization.
Though still valuable, it does not cover important aspects
relevant for SSD performance. In a sense, we are “search-
ing under the streetlight”, possibly missing important op-
portunities for optimizing storage system design.

We present the first I/O workload analysis designed
with SSDs in mind. We characterize traces from four
repositories and examine their ‘temperature’ ranges, sen-
sitivity to page size, and ‘logical locality’. Our initial re-
sults reveal nontrivial aspects that can significantly influ-
ence the design and performance of SSD-based systems.

1 Introduction

Characterizations of file-system and block-level work-
loads are often used in the design and optimization of
various levels of the storage stack. Aspects such as file
and object placement, metadata management, replication,
caching, array configuration, and power management are
optimized according to our understanding of the target
workloads. The storage community has invested consid-
erable effort in studying storage workloads. These studies
naturally focus on those aspects of the workload relevant
to optimization of the underlying storage component.

Analyses of file-system workloads examine the dis-
tributions of file size, age, and functional lifetime, cor-
relating them with file extension and directory struc-
ture [3, 12, 16]. On the other hand, I/O workload anal-
yses focus on factors crucial for the managing low level
devices and servers: inter-reference gaps, working set
sizes, and access skew are relevant for cache manage-
ment, while request sizes, idle and inter-arrival times
and read/write ratio are important for hard disk perfor-
mance [6, 7, 10, 15, 19]. Sequentiality—the portion and
nature of sequential accesses—is relevant for both: se-
quential accesses can be an order of magnitude faster than
random accesses on hard disks, but they can also pollute

the cache and render it utterly useless. Thus, they often
receive special attention in workload analysis [11].

Existing studies have been focusing on the same at-
tributes and characteristics for many years. The stor-
age landscape is changing, however, as flash-based solid-
state drives (SSDs) are gradually replacing hard disks
in many data centers. Although they present a similar
block interface, SSDs differ from hard disks in several
ways. The most notable are their fast random access,
asymmetric read and write performance, and out-of-place
writes, which require dynamic mapping between logical
and physical locations as well as garbage collection, both
implemented in the flash translation layer (FTL).

Consequently, SSDs have different optimization goals
than hard disks. For example, rather than organizing data
to optimize for fast sequential reads, data is organized on
SSDs with the objective of maximizing parallelism and
minimizing garbage collection overheads. The need for
dynamic mapping leads SSD optimizations to target data
movement, rather than data placement [4, 20]. At the
same time, FTL design allows for complex optimizations
and fast adjustment to workload changes.

This shift in storage device optimization calls for a new
understanding of I/O workloads. Although existing anal-
yses are still useful, they were designed for optimizing
hard disks. Even analyses and discussions made in the
context of SSD optimization [14, 17] consider traditional
metrics such as working set size, request rate, and inter-
reference gaps. Relying only on aspects relevant for hard
disk optimizations means we might be “searching under
the streetlight,” missing interesting attributes or phenom-
ena relevant for SSD performance, as well as opportuni-
ties for optimizing the entire storage system.

This work is a first attempt to characterize I/O work-
loads with SSDs in mind. We analyze over one hundred
traces from four public repositories [1, 7, 9, 13], with the
goal of identifying characteristics relevant to SSD design
and performance. We considertemperature range (rather
than just the amount of “hot” data they contain),logical
locality (rather than simple spatial locality or sequential-
ity), and their sensitivity to increasing SSD page sizes.
Our results expose nontrivial characteristics with substan-
tial implications for SSD design and performance.
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Repository: UMass MSR MS-Prod FIU
Num traces 36 34 43 9
Write reqs (M) 0.01–0.4 0.01–58 0.01–9 1–410
Median write size 1–48KB 4–64KB 1–64KB 4KB
Duration 12 hours 1 week 6–24 hours 3 weeks
Volume size (GB) 0.07–650 8–820 9–3200 8–400
Server categories DB dev, file DB, dev, file file, mail

web mail,web web

Table 1:Trace repositories. Additional details are available in
the original publications [1, 7, 9, 13].

2 Workloads

We analyze block-level traces of storage workloads from
four online repositories: the University of Massachusetts
(SPC traces) [1], Microsoft Research at Cambridge [13],
Microsoft production servers [7] and Florida Interna-
tional University [9]. We focus on standard attributes
available in all these traces: request arrival time (relative
to the beginning of the trace), volume, offset (in bytes
relative to the beginning of the volume), request size (in
bytes), and I/O operation (either read or write).

The focus of our analysis is the block-device level.
Thus, in workloads that access multiple volumes attached
to the same server, we analyzed each volume as a sep-
arate trace. Our analysis includes only traces with at
least 10,000 requests and at least 5,000 write requests,
122 traces in all. As part of our analysis, we categorize
the workloads according to the server’s function. Table 1
summarizes the characteristics of each repository.

3 Temperature Ranges

Workload skew is traditionally leveraged to optimize per-
formance by use of caches. If the cache is large enough
to store the application’sworking set, it can serve most
requests without accessing the underlying storage. In this
context, rules of thumb such as the 80-20 rule, which
states that 80% of requests access 20% of the data, are
often used to estimate the required cache size for a work-
load. Thus, traditional analyses characterize the skew of
a workload by assessing its working set size or amount of
hot (frequently accessed) data. While those are sufficient
for optimizing hard disk and cache performance, SSD op-
timization can benefit from more detailed analysis.

Motivation . In the context of FTL design, separat-
ing hot and cold data into different logical partitions has
been shown to minimize write amplification and, respec-
tively, garbage collection costs and cell wear [5]. Such
separation is also useful for other optimizations such as
wear leveling and page reuse [21]. Consequently, many
FTLs separate data into two partitions. Stoica and Ail-
amaki [18] have shown that severaltemperatures can be
grouped into the same partition without increasing write
amplification, as long as the access skew within each par-
tition is sufficiently small. We focus on this analysis and
characterize workloads according to the minimum num-
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Figure 1: (a) Required number of partitions forfr≤2.
(b) fmin(N) when restricting the number of partitions.

ber of partitions they require. We also aim to quantify
the cost of allocating fewer partitions when the optimal
number is too high. We are specifically interested in the
common case of two partitions, for hot and cold data.

Definitions. When a logical page is written to an SSD,
the FTL marks its previous physical location as invalid,
and chooses a chip and a plane to write the page to, ac-
cording to its striping the load balancing schemes. It
then writes the page to anactive block in the plane—a
block that has been erased and was not fully written yet.
Separating data intop logical partitions requiresp active
blocks in each plane.

Following the notation of Stoica and Ailamaki [18], let
fi be theupdate frequency of pagei. Ideally, each parti-
tion would contain pages with the same update frequency.
This is clearly unrealistic, as modern chips have as few as
512 blocks per plane [2]. Instead, logical pages with sev-
eral access frequencies are grouped into each partition.
Let fr(p) be theupdate frequency ratio in partition p,
which is the ratio between the maximum and minimum
update frequencies of pages stored inp. fr denotes the
maximal ratio across all partitions. Ensuringfr≤2 is suf-
ficient for minimizing garbage collection overhead [18].

Methodology and results. To see whether this op-
timization is realistic given modern chip organization,
we calculate the number of partitions required to ensure
fr≤2. We rank the logical sectors in each workload ac-
cording to their update frequency, and greedily assign
them to partitions: we start with the first partition, assign-
ing to it the pagei with maximal fi, as well as all pages
{ j} with f j ≥ fi/2. We then assign the next page to the
second partition, and so on.

Our results show that the minimal number of required
partitions is evenly distributed between 2 and 16, and that
it varies between categories. Figure 1(a) shows the 25th,
50th and 75th percentiles for each category, with the ver-
tical lines showing the minimum and maximum required
number of partitions for each category. For example, 9
partitions are sufficient for 75% of DBMS workloads,
while 75% of mail server workloads require at least 14
partitions. We repeated this experiment with varying re-
strictions onfr. As expected, more partitions are required
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Page: 0 1 2 3 Page: 0’ 1’
A 0.4 0.3 0.2 0.1 ⇒ A’ 0.7 0.3
B 0.4 0.1 0.3 0.2 B’ 0.5 0.5

Table 2:Example workloads A and B with access frequencies
to four logical pages and alignment to 2-page boundaries.

to maintain a lower ratio. The minimum number of re-
quired partitions ranges from 3 to 26 forfr≤1.5, and from
2 to 11 for fr≤3.

To understand the implications of these findings, con-
sider a state-of-the-art enterprise SSD with 512 blocks per
plane and 28% overprovisioning. Each plane will have
400 available logical blocks. Thus, to maintain 16 parti-
tions, 4% of the blocks must be allocated as active blocks,
and on average 2% of the logical capacity will be unuti-
lized. In addition to this overhead, one must consider the
cost of maintaining and classifying pages into several par-
titions in the SSD’s RAM.

SSD designs might limit the number of partitions in
order to exploit specialized hardware, or to minimize par-
titioning overhead. To estimate the effect of sub-optimal
partitioning, we repeated the procedure described above
to exhaustively findfmin(N)—the lowest ratio for which
the greedy partitioning scheme results inN—a predeter-
mined number of partitions. Figure 1(b) shows the distri-
bution of fmin(N) across all traces, forN between 2 and
32. With a limit of 2 and 4 partitions, the lowest ratio can
be as high as 10001 and 33.8, respectively, with respective
medians 77.7 and 6.6. However, when the number of par-
titions is limited to a modest 8,fmin(N) does not exceed
5, and is 2 or less for 28% of the traces.

Implications. Previous studies have shown that
garbage collection overheads are similar for a ratio of 2
and for uniform accesses, and demonstrated that these
overheads increase considerably with higher ratios [18].
Though the exact impact of values as high as 5 or 77 are
yet to be determined, it is clear that separating data into
only two partitions is far from optimal. Our results show
that workloads and categories differ greatly in the num-
ber of partitions they require and in the cost of suboptimal
partitioning. This lays the groundwork for more detailed
analysis of workload skew.

4 Access Granularity

I/O workload granularity is determined by the page size
of the underlying device and the access granularity of the
file system generating the requests. A sector size of 512B
was the default granularity for many years, and is also
the access granularity of all the workloads we examined,
with one exception: all the requests in workloads from
the FIU repository are of 4KB pages, which is the new
standard size for sectors and file-system pages alike.

1We did not continue the search beyondfr=1000 because this value
was encountered in only a few extreme cases.

2 4 8 12 16 24

Max partitions N

100

101

102

M
e
d
ia

n
 f
m
in
(N

) 
[l

o
g
]

Page Size

512B

4KB

16KB

64KB

Figure 2: Median fmin(N) with different page sizes when re-
stricting the number of partitions.

Motivation. While hard disk sector sizes have re-
mained stable for many years, SSD page size has in-
creased rapidly, from 2KB to 16KB in a few years [2].
This trend is expected to continue as flash feature sizes
decrease, to allow more aggressive write optimizations
and bit error correction. Nonetheless, file systems con-
tinue to operate at 4KB granularity, to allow fine-grained
allocation and access. Mapping these 4KB logical pages
to larger physical pages is the responsibility of the FTL,
and although many optimizations have been suggested to
alleviate the overhead of this mapping, all FTLs employ
some form of logical address alignment.

Alignment causes accesses to two or more logical
pages to refer to the same aligned page, with two major
implications. First, pagelifetime—the time between con-
secutive writes to the same page—decreases, as pages are
updated more frequently than in the original workload. In
addition, the access distribution of the workload is mod-
ified: accesses to different pages, with different original
access frequencies, are now considered as accesses to the
same larger page.

Consider, for example, two workloads that access
pages 0–3, as described in Table 2. Workloads A and
B have the same access distribution and CDF, although
individual pages are ranked differently in each workload:
hot data are clustered in a small logical address space in
workload A but not in B. Now consider workloads A’ and
B’, which result from aligning A and B to a 2-page bound-
ary. Although A and B both had the same skew, alignment
increased the skew of A, yet it decreased that of B.

Methodology and results. We study the effect of in-
creasing device access granularity: for each workload and
each physical page size from 4KB to 64KB, we align the
requested logical address to page boundaries, and aggre-
gate accesses to the same physical page. We then repeat
the experiments in Section 3 for each page size.

Figure 2 shows the median access frequency ratio when
the number of partitions is restricted and the page size
varies from 512B to 64KB (the figure of the maximum
looks similar). Interestingly, increasing the page size
from 512B to 4KB increases the skew considerably, but
increasing it further has only a minor effect. We also cal-
culated the number of partitions required forfr≤2 with

3



i, t DD

T j, t ′

Figure 3:Pagej written at timet ′ hits pagei written at timet.

different page sizes. Our results (omitted for lack of
space) show that for individual workloads, increasing the
page sizes beyond 4KB resulted in a difference of only
1 or 2 partitions. Some workloads behave like example
workload A for some page sizes and like B for others.

Implications. The implications of changes in work-
load skew are well understood when it comes to caching,
tiering, partitioning, and other optimizations. Our initial
results indicate that increasing the page size beyond the
standard operating system size of 4KB has little effect on
workload skew. Analyzing the effect of increased page
size on lifetime is part of our future work.

5 Spatial Locality

Locality has always been important in workload analy-
sis. Temporal locality—repeated accesses to the same
logical address—has been studied in the form of inter-
reference gaps, working set size, and functional life-
time [7, 10, 15, 16]. Spatial locality—accesses to nearby
logical addresses—is usually studied in the form of se-
quential access: the portion of sequential accesses and
their “run length.” Spatial locality in random accesses is
harder to characterize, and is usually analyzed by study-
ing the differences between offsets of consecutive re-
quests [6, 7, 10, 15]. This is often referred to as “seek
distance,” as the motivation for its study is to estimate
disk arm movements when serving a given workload.

Motivation. Although sequential accesses are known
to improve SSD throughput, we focus instead on novel
characterization of random accesses in SSDs, where spa-
tial locality is critical despite the lack of moving parts.
Consider, for example, an SSD that stripes pages across
chips in a RAID organization, and must update a par-
ity page whenever a data page is written. A possible
optimization is to delay parity updates until more pages
in the same stripe are updated, to minimize write over-
head [8]. To evaluate the efficiency of such optimiza-
tions,one might ask, “What is the probability that another
page in the samestripe will be written in the near future?”

As another example, consider a block-mapping FTL,
which groups together pages with consecutive logical ad-
dresses. Pages are first written to a log, and are period-
ically garbage collected and grouped according to their
logical address. In this context, the expected probabil-
ity of writing to the same logicalblock can help optimize
garbage collection.

Definitions. We characterize thelogical spatial local-
ity (logical locality, for short) of a workload as follows.
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Figure 4:Logical locality of the ‘casa’ workload (FIU).

For a given write to logical pagei at timeT , we calculate
the probabilityPD,T that a logical pagej, |i− j|≤D, will
be written at timet ′≤t+T . The logical locality is given
as a cumulative distribution table, where the value in lo-
cation (D,T ) represents the expectedPD,T . We currently
refer tovirtual time—a counter incremented on each I/O
request. Analysis of logical locality as a function of ab-
solute time is part of our future work.

For any predeterminedD and T we say that a write
requesthits a previous write request if the time between
them is less thanT , and we can find a pair of pages, one in
each request, whose logical addresses are withinD pages
from one another (see example in Figure 3).

Methodology and results.We calculate logical local-
ity by defining a ‘window size’ ofDmax andTmax (1024
and 5000 in our experiments) and storing a sliding win-
dow of the lastYmax requests in memory while travers-
ing each workload. When a new request hits one of the
recorded requests, we update the CDF accordingly. We
present the logical locality in a three dimensional graph,
where the axes are distance (D) and time (T ). Figure 4,
discussed below, shows an example. The graph shows
how PD,T increases as we increaseD andT : a new re-
quest hits older requests as we move left on theT axis, or
requests at a larger offset as we move right on theD axis.

Note that in the calculation described above, two or
more pages written in the same request will be treated
as two requests at the same time, which consequently hit
one another: for every one of these pages,i, there is an-
other page (i-1, i+1 or both) written at timet+0. This
often causesPD,T to be very close to 1 for allD andT .
This result does answer the question of future writes in
the vicinity of the current page, but it does not provide
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meaningful insight about the different workloads.
To prevent large requests from ‘masking’ other forms

of locality, we do not consider pages in the same request
as hitting one another—we count only hits in previous re-
quests. Although this approach does not capture locality
within the same request, it provides a better answer to the
question above: we already know the size of the current
request, and we can usePD,T to make an educated guess
about the future. The cumulative probabilitiesPD,T can be
complemented with the distribution of request sizes for a
more complete picture of the locality in the trace.

Figure 4 shows logical locality of the workload of the
‘casa’ server from the FIU repository, which stores home
directories. The full results (a) show that when the win-
dow is large enough,PD,T approaches 1. A close-up view
(b) shows howPD,T increases in each axis, with several
noticeable “steps.” Comparing the cross-sections in each
axis (c) shows thatPD,T converges much faster in time
(right). This is common in other traces, suggesting that
locality does not increase much after a short time, imply-
ing that optimizations such as delayed garbage collection
or parity updates are feasible even with only a short wait.

To confirm our hypothesis, we calculateδPD—the
maximal increase inPD,T in a workload for a given dis-
tanceD. In other words, we measure the potential im-
provement inPD,T when waiting for the maximal time
T . Figure 5 summarizes our results for all workloads and
three values ofD. It shows that as we increase the dis-
tance from the adjacent page (D = 1) to 16 and 64 pages,
PD,T can grow more. Conversely, the potential improve-
ment in PD,T remains similar as we increaseT (figure
omitted for space). In summary, waiting more time im-
proves locality by only a little.

Implications. Our initial findings expose a variety of
behaviors in the logical locality of the workloads. We are
currently investigating possible aggregate metrics for rep-
resenting logical locality, as well as correlations between
logical locality and workload characteristics such as ap-
plication type and workload skew.

6 Conclusions
We present a first attempt at characterizing I/O workloads
with SSDs in mind. Our initial results expose nontrivial
insights when examining workload temperature ranges,
sensitivity to page size and logical locality. Some impli-
cations of our findings for SSD design and optimization

are straightforward, while others are yet to be determined.
Regardless, additional analysis is clearly due, taking into
account changing storage devices. We are continuing the
analysis described in this paper, to identify and under-
stand additional phenomena and correlations.
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